Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 3, pp 675–681 | Cite as

Structural optimization of gas diffusion electrodes loaded with LaMnO3 electrocatalysts

  • Masayoshi Yuasa
  • Akiko Koga
  • Tetsuya Kida
  • Kengo Shimanoe
  • Noboru Yamazoe
Original Paper

Abstract

In this study, gas diffusion electrodes (GDEs) with two catalyst layers were fabricated and tested for their electrode performance for oxygen reduction in an alkaline solution. The LaMnO3/carbon black catalyst layers were fabricated using a reverse micelle method to finely disperse the LaMnO3 particles onto the carbon matrices, for which commercial Ketjen Black (KB) (1270 m2 g−1) and Vulcan XC-72R (VX) (254 m2 g−1) were used. The three-layer-structured GDE with the two LaMnO3/KB and LaMnO3/VX catalyst layers exhibited a superior oxygen reduction activity when compared to that of a conventional GDE with only one LaMnO3/KB catalyst layer. Pore size distribution and gas permeability measurements revealed that the LaMnO3/VX layer was more porous and had higher gas permeability than the LaMnO3/KB layer. These results suggest that the intermediate layer of LaMnO3/VX can efficiently supply oxygen to reaction sites dispersed in the LaMnO3/KB and LaMnO3/VX catalyst layers, which consequently leads to an improvement in the electrode performance.

Keywords

Gas diffusion electrode Oxygen reduction Pt-free catalyst Brine electrolysis 

Notes

Acknowledgment

This study was supported by CREST of JST (Japanese Science and Technology Corporation).

References

  1. 1.
    Zaromb S (1962) J Electrochem Soc 109:1125CrossRefGoogle Scholar
  2. 2.
    Foller PC (1986) J Appl Electrochem 16:527CrossRefGoogle Scholar
  3. 3.
    Morimoto T, Suzuki K, Matsubara T, Yoshida N (2000) Electrochim Acta 45:4257CrossRefGoogle Scholar
  4. 4.
    Kiros Y, Pirjamali M, Bursell M (2006) Electrochim Acta 51:3346CrossRefGoogle Scholar
  5. 5.
    Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) J Power Sources 187:39CrossRefGoogle Scholar
  6. 6.
    Alcaide F, Cabot P-L, Brillas E (2006) J Power Scources 153:47CrossRefGoogle Scholar
  7. 7.
    Morrison MM, Roberts JL Jr, Sawyer DT (1979) Inorg Chem 18:1971CrossRefGoogle Scholar
  8. 8.
    Yeager E (1984) Electrochim Acta 29:1527CrossRefGoogle Scholar
  9. 9.
    Taylor EJ, Anderson EB, Vilambi NRK (1992) J Electrochem Soc 139:L45CrossRefGoogle Scholar
  10. 10.
    Mukerjee S, Srinivasan S, Soriaga MP (1992) J Electrochem Soc 142:1409CrossRefGoogle Scholar
  11. 11.
    Beard BC, Ross PN Jr (1990) J Electrochem Soc 137:3368CrossRefGoogle Scholar
  12. 12.
    Kiros Y (1996) J Electrochem Soc 143:2152CrossRefGoogle Scholar
  13. 13.
    Genieas L, Faure R, Durand R (1998) Electrochim Acta 44:1317CrossRefGoogle Scholar
  14. 14.
    Watanabe M, Tomikawa M, Motoo S (1985) J Electroanal Chem 182:193CrossRefGoogle Scholar
  15. 15.
    Tseung ACC, Wong LL (1972) J Appl Electrochem 2:211CrossRefGoogle Scholar
  16. 16.
    Miura N, Gomyo K, Yamazoe N, Seiyama T (1981) Chem Lett 1279Google Scholar
  17. 17.
    Furuya N, Aikawa H (2000) Electrochim Acta 45:4251CrossRefGoogle Scholar
  18. 18.
    Jiang SP, Tseung ACC (1990) J Electrochem Soc 137:3442CrossRefGoogle Scholar
  19. 19.
    Bagoizky VS, Shumilov NA, Khrushcheva E (1976) Electrochim Acta 21:919CrossRefGoogle Scholar
  20. 20.
    Kanungo SB, Parida KM, Sant BR (1981) Electrochim Acta 26:1157CrossRefGoogle Scholar
  21. 21.
    Klapste B, Vondrak J, Velicka J (2002) Electrochim Acta 47:2365CrossRefGoogle Scholar
  22. 22.
    Yang J, Xu JJ (2003) Electrochem Commun 5:306CrossRefGoogle Scholar
  23. 23.
    Burshtein RH, Vilinskaya VS, Tarasevich MR, Bulavina NG (1976) React Kinet Catal Lett 4:159CrossRefGoogle Scholar
  24. 24.
    Raj IA, Vase KI (1990) Int J Hydrogen Energy 15:751CrossRefGoogle Scholar
  25. 25.
    Meadowcroft DB (1970) Nature 226:847CrossRefGoogle Scholar
  26. 26.
    Hyodo T, Hayashi M, Miura N, Yamazoe N (1996) J Electrochem Soc 143:L266CrossRefGoogle Scholar
  27. 27.
    Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2000) J Electroanal Chem 491:69CrossRefGoogle Scholar
  28. 28.
    Osseo-Asare K, Arriagada FJ (1990) Colloid Surf 50:321CrossRefGoogle Scholar
  29. 29.
    Khiew PS, Radiman S, Huang NM, Md Soot Ahmad (2003) J Cryst Growth 254:235Google Scholar
  30. 30.
    Yuasa M, Sakai G, Shimanoe K, Teraoka Y, Yamazoe N (2004) J Electrochem Soc 151:A1477CrossRefGoogle Scholar
  31. 31.
    Yuasa M, Shimanoe K, Teraoka Y, Yamazoe N (2007) Catal Today 126:313CrossRefGoogle Scholar
  32. 32.
    Yuasa M, Sakai G, Shimanoe K, Teraoka Y, Yamazoe N (2004) J Electrochem Soc 151:A1690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Masayoshi Yuasa
    • 1
  • Akiko Koga
    • 2
  • Tetsuya Kida
    • 1
  • Kengo Shimanoe
    • 1
  • Noboru Yamazoe
    • 1
  1. 1.Department of Energy and Material Sciences, Faculty of Engineering SciencesKyushu UniversityKasuga-shiJapan
  2. 2.Department of Energy Science and EngineeringKyushu UniversityKasuga-shiJapan

Personalised recommendations