Journal of Applied Electrochemistry

, Volume 40, Issue 3, pp 639–651 | Cite as

XPS and EIS studies of sputtered Al–Ce films formed on AA6061 aluminum alloy in 3.5% NaCl solution

  • M. A. Domínguez-Crespo
  • A. M. Torres-Huerta
  • S. E. Rodil
  • S. B. Brachetti-Sibaja
  • W. de la Cruz
  • A. Flores-Vela
Original Paper


X-ray photoelectron spectroscopy (XPS) was used to analyze the composition of films at different deposition parameters of sputtered Al-Ce coatings on AA6061 aluminum alloys. By means of electrochemical impedance spectroscopy (EIS) measurements, the protective character of these coatings was studied for 21 days of exposure in a 3.5 wt% NaCl solution and an attempt was made to establish the relationship between film thickness and chemical composition (Al/Ce, Ce3/Ce4+ ratios) of the surface before and after the electrochemical characterization. XPS studies revealed the presence of the Alo, Al2O3, CeO2 and Ce2O3 compounds, confirming that the sputtered Al-Ce films were deposited in the metallic form and thereafter were superficially oxidized under ambient conditions. The Al–Ce bonds were overlapped with the signal of cerium oxides. The transport phenomena in the oxide film or controlled diffusion process are strongly dependent on the deposition parameters and exposure time in the aggressive medium. It was also found that in the deposited samples at p4P200t300, the film was still present after 21 days of exposure, although with visible cracks and erosion areas; however, the Ce3/Ce4+ ratio almost remained constant before and after the electrochemical characterization, which explained the barrier properties of these samples as compared with others at different deposition parameters.


AA6061 Magnetron sputtering Coatings Corrosion properties Al–Ce films 



This study has been financially supported by CONACYT (project number 61354), IPN (projects number SIP-2009-0561, 2009-0499) and SNI. The authors would like to thank Mr. Javier Zapata Torres for his technical support.


  1. 1.
    Szklarska-Smialowska Z (1999) Corros Sci 41:1743CrossRefGoogle Scholar
  2. 2.
    Sun X, Zhou X, Thompson GE, Skeldon P, Shimizu K, Furneaux RC, Scamans G (1998) Sixth international conference on aluminium alloys vol 3, p 1571Google Scholar
  3. 3.
    Davis JR (ed) (1999) Corrosion of aluminium and aluminium alloys. ASM International, Materials ParkGoogle Scholar
  4. 4.
    Habazaki H, Shimizu K, Skeldon P, Thompson GE, Wood GC, Zhou X (1997) Corros Sci 39:731CrossRefGoogle Scholar
  5. 5.
    Mujibur Rahman ABM, Kumar S, Gerson AR (2008) Corros Sci 50:1267CrossRefGoogle Scholar
  6. 6.
    Voevodin N, Jeffcoate C, Simon L, Khobaib M, Donley M (2001) Surf Coat Technol 140:29CrossRefGoogle Scholar
  7. 7.
    Sander LS, Musingo EM, Neill WJ (1990) US Patent 4,921,552Google Scholar
  8. 8.
    Das N (1992) US Patent 5,139,586Google Scholar
  9. 9.
    Miller RN (1994) US Patent 5,356,492Google Scholar
  10. 10.
    Tomlinson CE (1995) US Patent 5,380,374Google Scholar
  11. 11.
    Hinton BRW, Arnott DR, Ryan NE (1986) Mater Forum 9:162Google Scholar
  12. 12.
    Mansfeld F, Lin S, Kim S, Shih H (1989) Electrochim Acta 34:1123CrossRefGoogle Scholar
  13. 13.
    Domínguez-Crespo MA, Rodil SE, Torres-Huerta AM, Ramírez-Meneses E, Suárez-Velázquez G (2009) Surf Coat Technol 204:571Google Scholar
  14. 14.
    Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E (2007) Nat Mater 6:192CrossRefGoogle Scholar
  15. 15.
    Mazurkiewicz B, Piotrowski A (1983) Corros Sci 23:697CrossRefGoogle Scholar
  16. 16.
    Blanc C, Lavelle B, Mankowski G (1996) Mater Sci Forum 217:1559CrossRefGoogle Scholar
  17. 17.
    Vyazovikina NV (1999) Protect Met 35:448Google Scholar
  18. 18.
    Okamoto G, Shibata T (1978) In: Frankenthal RP, Kruger J (eds) Passivity of metals, Corrosion monograph series, The Electrochemical Society, Pennington, NJGoogle Scholar
  19. 19.
    Blanc C, Mankowski G (1997) Corros Sci 39:949CrossRefGoogle Scholar
  20. 20.
    Blanc C, Lavelle B, Mankowski G (1997) Corros Sci 39:495CrossRefGoogle Scholar
  21. 21.
    Aballe A, Bethencourt M, Botana FJ, Cano MJ, Marcos M (2001) Corros Sci 43:1657CrossRefGoogle Scholar
  22. 22.
    Bethencourt M, Botana FJ, Calvino JJ, Marcos M, Rodriguez MA (1998) Mater Sci Forum 289–292:567CrossRefGoogle Scholar
  23. 23.
    Ambat R, Dwarakadasa ES (1994) J Appl Electrochem 24:911CrossRefGoogle Scholar
  24. 24.
    Wallinder D, Pan J, Leygraf C, Delblanc-Bauer A (1999) Corros Sci 41:275CrossRefGoogle Scholar
  25. 25.
    Yu X, Li G (2004) J Alloys Compd 264:193CrossRefGoogle Scholar
  26. 26.
    Pan M, Meng GY, Xin HW, Chen CS, Peng DK, Lin YS (1998) Thin Solid Films 324:89CrossRefGoogle Scholar
  27. 27.
    Pardo A, Merino MC, Arrabal R, Viejo F, Munoz JA (2007) Appl Surf Sci 253:3334CrossRefGoogle Scholar
  28. 28.
    Teterin YA, Teterin AY, Lebedev AM, Utkin IO (1998) J Electron Spectrosc Relat Phenom 88–91:275CrossRefGoogle Scholar
  29. 29.
    Arnott DR, Ryan NE, Hinton BRW, Sexton BA, Hughes AE (1985) Appl Surf Sci 22–23:236CrossRefGoogle Scholar
  30. 30.
    Yu X, Li G (2004) J Alloys Compd 364:193CrossRefGoogle Scholar
  31. 31.
    Domínguez-Crespo MA, Torres-Huerta AM, Rodil SE, Ramírez-Meneses E, Suárez-Velázquez G, Hernández-Pérez MA (2009) Electrochim Acta 55:498Google Scholar
  32. 32.
    Goeminne G, Terryn H, Vereecken J (1998) Electrochim Acta 43:1829CrossRefGoogle Scholar
  33. 33.
    Campestrini P, Westing V, Wit JH (2001) Electrochim Acta 46:2631CrossRefGoogle Scholar
  34. 34.
    Goeminne G, Terryn H, Vereecken J (1995) Electrochim Acta 40:479CrossRefGoogle Scholar
  35. 35.
    Moutarlier V, Gigandet MP, Normand, Pagetti BJ (2005) Corros Sci 47:937CrossRefGoogle Scholar
  36. 36.
    Palomino LEM, Aoki IV, de Melo HG (2006) Electrochim Acta 51:5943CrossRefGoogle Scholar
  37. 37.
    López DA, Simison SN, de Sánchez SR (2005) Corros Sci 47:735CrossRefGoogle Scholar
  38. 38.
    Bilkova K, Hackerman N, Bartos M (2002) Proceedings of the NACE corrosion, paper no. 2284, Denver, COGoogle Scholar
  39. 39.
    Scully JR (1993) Electrochemical impedance: analysis and interpretation. ASTM STP 1188, p 26Google Scholar
  40. 40.
    Bessone JB, Salinas DR, Mayer CE, Ebert M, Lorenz WJ (1992) Electrochim Acta 37:2283CrossRefGoogle Scholar
  41. 41.
    Xingwen Y, Chunan C, Zhiming Y, Derui Z, Zhongda Y (2001) Corros Sci 43:1283CrossRefGoogle Scholar
  42. 42.
    Hughes AE, Gorman JD, Patterson PJK (1996) Corros Sci 38:1957CrossRefGoogle Scholar
  43. 43.
    Gorman JD, Jhonson ST, Joghnston PN, Patterson PJK, Hughes AE (1996) Corros Sci 38:1977CrossRefGoogle Scholar
  44. 44.
    Scully JC (1990) The fundaments of corrosion, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  45. 45.
    Zaid B, Saidi D, Benzaid A, Hadji S (2008) Corros Sci 50:1841CrossRefGoogle Scholar
  46. 46.
    Meng G, Wei L, Zhang T, Shao Y, Wang F, Dong C, Li X (2009) Corros Sci 51:2151CrossRefGoogle Scholar
  47. 47.
    Ren J, Zuo Y (2005) Surf Coat Technol 191:311CrossRefGoogle Scholar
  48. 48.
    Yu SY, O’Grady WE, Ramaker DE, Natishan PM (2000) J Electrochem Soc 147:2952CrossRefGoogle Scholar
  49. 49.
    Pyun SI, Lee WJ (2001) Corros Sci 43:153Google Scholar
  50. 50.
    Moutarlier V, Gigandet MP, Pagetti J (2003) Appl Surf Sci 206:237CrossRefGoogle Scholar
  51. 51.
    Zhang H, Zuo Y (2008) Appl Surf Sci 254:4930CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. A. Domínguez-Crespo
    • 1
  • A. M. Torres-Huerta
    • 1
  • S. E. Rodil
    • 3
  • S. B. Brachetti-Sibaja
    • 2
  • W. de la Cruz
    • 4
  • A. Flores-Vela
    • 1
  1. 1.CICATA-Altamira, IPNAltamiraMexico
  2. 2.Alumna PTA-CICATA-Altamira IPNTampsMexico
  3. 3.IIM-UNAM, Circuito Exterior s/n, Ciudad Universitaria, Del. CoyoacánMéxicoMexico
  4. 4.Centro de Nanociencias y Nanotecnología, UNAMEnsenadaMexico

Personalised recommendations