Journal of Applied Electrochemistry

, Volume 40, Issue 3, pp 581–592 | Cite as

New oxygen evolution anodes for metal electrowinning: investigation of local physicochemical processes on composite electrodes with conductive atomic force microscopy and scanning electrochemical microscopy

  • Sönke Schmachtel
  • Sascha E. Pust
  • Kyösti Kontturi
  • Olof Forsén
  • Gunther Wittstock
Original Paper


Atomic force microscopy (AFM), conductive atomic force microscopy (CAFM) in air, and scanning electrochemcial microscopy (SECM) in 2 M H2SO4 have been used to investigate model composite electrodes obtained by pressing sieved MnO2 particles into a Pb matrix. These model electrodes shall resemble new composite electrodes produced by coldspraying and currently being tested for Zn electrowinning. CAFM showed a very uneven distribution of the current path through the matrix electrode with the highest currents measured at the MnO2/Pb domain boundary. SECM images in the substrate-generation/tip-collection mode in vertical and horizontal planes could show spatial concentration distribution of H+, O2 and H2O2 that could be evaluated qualitatively despite interfering turbulent convection due to raising gas bubbles. There is a concentration overvoltage due to deviations of the H+ and O2 concentration close to the surface from the bulk value. It amounts to about 40–50 mV for both compounds. H2O2 is formed as an intermediate and is consumed at the MnO2 catalyst particles.


Composite electrodes Electrowinning Lead electrode Manganese dioxide Electrocatalysis Oxygen evolution Atomic force microscopy Conductive atomic force microscopy Scanning electrochemical microscopy 



The work has been partially supported by Deutsche Forschungsgemeinschaft (DFG, grant Wi 1617/8). Sönke Schmachtel wishes to acknowledge financial support by Outokumpu foundation and ESPOM graduate school, and Outotec for covering material costs.


  1. 1.
    Aromaa J, Evans JW (2007) In: Bard AJ, Stratmann M, Macdonald D et al (eds) Encyclopedia of electrochemistry, vol 5. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Moats MS (2008) JOM 60:46CrossRefGoogle Scholar
  3. 3.
    Beer HB (1961) German patent 1115721Google Scholar
  4. 4.
    Beer HB (1966) Dutch patent 6606302Google Scholar
  5. 5.
    Beer HB (1972) US patent 6800834Google Scholar
  6. 6.
    Beer HB (1976) US patent reissue 28820Google Scholar
  7. 7.
    Beer HB, Hinden JM (1981) European patent 27051Google Scholar
  8. 8.
    Beer HB, Hinden JM (1982) European patent 46447Google Scholar
  9. 9.
    Hinden JM, Beer HB (1982) European patent 46449Google Scholar
  10. 10.
    Chandler GK, Genders JD, Pletcher D (1997) Platinum Met Rev 41:54Google Scholar
  11. 11.
    Hayfield PCS (1998) Platinum Met Rev 42:27Google Scholar
  12. 12.
    Hayfield PCS (1998) Platinum Met Rev 42:46Google Scholar
  13. 13.
    Thonstad J (1998) Elektrolyseprosesser. Norwegian University of Science and Technology, TrondheimGoogle Scholar
  14. 14.
    Bestetti M, Ducati U, Kelsall GH et al (2001) Can Metall Q 40:451Google Scholar
  15. 15.
    Åkre T (2008) Electrowinning of cobalt from chloride solutions—anodic deposition of cobalt oxide on DSA. Doctoral thesis, Norwegian University of Science and Technology, TrondheimGoogle Scholar
  16. 16.
    Veräjänkorva S (2005) Thermal spraying of catalytic materials. Masters Thesis, Tampere University of Technology, TampereGoogle Scholar
  17. 17.
    Gaertner F, Stoltenhoff T, Schmidt T et al (2006) J Therm Spray Technol 15:223CrossRefGoogle Scholar
  18. 18.
    Barker MH, Hyvaerinen O, Osara K (2007) International patent 2007045716Google Scholar
  19. 19.
    Schmachtel S, Toiminen M, Kontturi K et al (2009) J Appl Electrochem 39 (in press)Google Scholar
  20. 20.
    Schmachtel S (2004) Development of acid resistant coatings for oxygen evolving anodes for the electrowinning of zinc or copper. Diploma Thesis, Christian-Albrechts-Universität, KielGoogle Scholar
  21. 21.
    Musiani M, Guerriero P (1998) Electrochim Acta 44:1499CrossRefGoogle Scholar
  22. 22.
    Stulik K, Amatore C, Holub K et al (2000) Pure Appl Chem 72:1483CrossRefGoogle Scholar
  23. 23.
    Davies TJ, Compton RG (2005) J Electroanal Chem 585:63CrossRefGoogle Scholar
  24. 24.
    Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797CrossRefGoogle Scholar
  25. 25.
    Ordeig O, del Campo J, Munoz FX et al (2007) Electroanalysis 19:1973CrossRefGoogle Scholar
  26. 26.
    Amatore C, Saveant JM, Tessier D (1983) J Electroanal Chem 147:39CrossRefGoogle Scholar
  27. 27.
    Pust SE, Maier W, Wittstock G (2008) Z Phys Chem 222:1463Google Scholar
  28. 28.
    Wittstock G, Burchardt M, Pust SE et al (2007) Angew Chem Int Ed 46:1584CrossRefGoogle Scholar
  29. 29.
    Lu X, Wang Q, Liu X (2007) Anal Chim Acta 601:10CrossRefGoogle Scholar
  30. 30.
    Sun P, Laforge FO, Mirkin MV (2007) Phys Chem Chem Phys 9:802CrossRefGoogle Scholar
  31. 31.
    Edwards MA, Martin S, Whitworth AL et al (2006) Physiol Meas 27:R63CrossRefGoogle Scholar
  32. 32.
    Amemiya S, Guo J, Xiong H et al (2006) Anal Bioanal Chem 386:458CrossRefGoogle Scholar
  33. 33.
    Gyurcsanyi RE, Jagerszki G, Kiss G et al (2004) Bioelectrochemistry 63:207CrossRefGoogle Scholar
  34. 34.
    Macpherson JV, Gueneau de Mussy J-P, Delplancke J-L (2001) Electrochem Solid State Lett 4:E33CrossRefGoogle Scholar
  35. 35.
    Macpherson JV, Gueneau de Mussy J-P, Delplancke J-L (2002) J Electrochem Soc 149:B306CrossRefGoogle Scholar
  36. 36.
    Gueneau de Mussy J-P, Macpherson JV, Delplancke J-L (2003) Electrochim Acta 48:1131CrossRefGoogle Scholar
  37. 37.
    Wilson NR, Clewes SL, Newton ME et al (2006) J Phys Chem B 110:5639CrossRefGoogle Scholar
  38. 38.
    O’Hare D, Macpherson JV, Willows A (2002) Electrochem Commun 4:245CrossRefGoogle Scholar
  39. 39.
    Kranz C, Ludwig M, Gaub HE et al (1995) Adv Mater 7:38CrossRefGoogle Scholar
  40. 40.
    Nunes Kirchner C, Hallmeier KH, Szargan R et al (2007) Electroanalysis 19:1023CrossRefGoogle Scholar
  41. 41.
    Wittstock G, Asmus T, Wilhelm T (2000) Fresenius J Anal Chem 367:346CrossRefGoogle Scholar
  42. 42.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  43. 43.
    O’Shea SJ, Atta RM, Welland ME (1995) Rev Sci Instrum 66:2508CrossRefGoogle Scholar
  44. 44.
    Trenkler T, Hantschel T, Stephenson R et al (2000) J Vac Sci Technol B 18:418CrossRefGoogle Scholar
  45. 45.
    Trasatti S (2005) Russ J Electrochem 41:1255CrossRefGoogle Scholar
  46. 46.
    Xu Y, Schoonen MAA (2000) Am Mineral 85:543Google Scholar
  47. 47.
    Sklyar O, Träuble M, Zhao C et al (2006) J Phys Chem B 110:15869CrossRefGoogle Scholar
  48. 48.
    Horrocks BR, Schmidtke D, Heller A et al (1993) Anal Chem 65:3605CrossRefGoogle Scholar
  49. 49.
    Shen Y, Träuble M, Wittstock G (2008) Anal Chem 80:750CrossRefGoogle Scholar
  50. 50.
    Gubbins KE, Walker RD Jr (1965) J Electrochem Soc 112:469CrossRefGoogle Scholar
  51. 51.
    Carano M, Holt KB, Bard AJ (2003) Anal Chem 75:5071CrossRefGoogle Scholar
  52. 52.
    Shen Y, Träuble M, Wittstock G (2008) Phys Chem Chem Phys 10:3635CrossRefGoogle Scholar
  53. 53.
    Lobo VMM (1989) Handbook of electrolyte solutions, part A. Elsevier, AmsterdamGoogle Scholar
  54. 54.
    Juermann G, Schiffrin DJ, Tammeveski K (2007) Electrochim Acta 53:390CrossRefGoogle Scholar
  55. 55.
    Nefedov VG, Artyushenko OA, Kashevarova EV (2006) Russ J Electrochem 42:638CrossRefGoogle Scholar
  56. 56.
    Karnicka K, Eckhard K, Guschin DA et al (2007) Electrochem Commun 9:1998CrossRefGoogle Scholar
  57. 57.
    Heinze J (1981) J Electroanal Chem 124:73Google Scholar
  58. 58.
    Amatore C, Szunerits S, Thouin L et al (2001) J Electroanal Chem 500:62CrossRefGoogle Scholar
  59. 59.
    Pohl P, Saparov SM, Antonenko YN (1998) Biophys J 75:1403CrossRefGoogle Scholar
  60. 60.
    Trasatti S, Lodi G (1980/81) In: Trasatti S (ed) Electrodes of conductive metallic oxides, B, Elsevier, AmsterdamGoogle Scholar
  61. 61.
    Morita M, Iwakura C, Tamura H (1977) Electrochim Acta 22:325CrossRefGoogle Scholar
  62. 62.
    Wilhelm T, Wittstock G (2000) Mikrochim Acta 133:1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratory of Physical Chemistry and ElectrochemistryHelsinki University of Technology (TKK)EspooFinland
  2. 2.Laboratory of Materials Chemistry and CorrosionHelsinki University of Technology (TKK)EspooFinland
  3. 3.Department of Pure and Applied ChemistryCarl von Ossietzky University of Oldenburg, Faculty of Mathematics and Science, Center of Interface Science (CIS)OldenburgGermany
  4. 4.IEF5 – PhotovoltaikForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations