Journal of Applied Electrochemistry

, Volume 40, Issue 2, pp 341–344 | Cite as

Ag nanowires and its application as electrode materials in electrochemical capacitor

  • Zhong-Ai Hu
  • Yao-Xian Wang
  • Yu-Long Xie
  • Yu-Ying Yang
  • Zi-Yu Zhang
  • Hong-Ying Wu
Original Paper


Silver nanowires were synthesized on a large scale by using anodic aluminum oxide (AAO) film as templates and serving ethylene glycol as reductant. Their morphological and structural characterizations were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and selected area electron diffraction (SAED). The electrochemical properties of silver nanowires as electrode materials for electrochemical capacitors were investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge technique in 6 M KOH aqueous electrolyte. The Ag2O/Ag coaxial nanowires were formed by the incomplete electrochemical oxidation during the charge step. The maximum specific capacitance of 987 F g−1 was obtained at a charge–discharge current density of 5 mA cm−2.


Ag nanowire Anodic aluminum oxide film Electrochemical capacitor Specific capacitance 



We gratefully acknowledge the support of this work by Natural Science Funds in Gansu Science and Technology Committee (0803RJ2A005) and postgraduate advisor program of Provincial Education Department of Gansu.


  1. 1.
    Arbizzani C, Mastragostino M, Soavi F (2001) J Power Sources 100:164CrossRefGoogle Scholar
  2. 2.
    Kim C (2005) J Power Sources 142:382CrossRefGoogle Scholar
  3. 3.
    Yuan GH, Jiang ZH, Aramata A et al (2005) Carbon 43:2913CrossRefGoogle Scholar
  4. 4.
    Gupta V, Miura N (2005) Electrochem Solid-State Lett 8:630CrossRefGoogle Scholar
  5. 5.
    Watanabe K, Kikuoka T, Kumagai N (1995) J Appl Electrochem 25:219CrossRefGoogle Scholar
  6. 6.
    Tao F, Guan M, Zhou Y et al (2008) Cryst Growth Des 8:2157CrossRefGoogle Scholar
  7. 7.
    Xing W, Li F, Yan ZF et al (2004) J Power Sources 134:324CrossRefGoogle Scholar
  8. 8.
    Armstrong G, Armstrong AR, Bruce PG et al (2006) Adv Mater 18:2597CrossRefGoogle Scholar
  9. 9.
    Prasad KR, Miura N (2004) J Power Sources 134:354CrossRefGoogle Scholar
  10. 10.
    Susanti D, Tsai DS, Huang YS et al (2007) J Phys Chem C 111:9530CrossRefGoogle Scholar
  11. 11.
    Arico AS, Bruce P, Scrosati B et al (2005) Nat Mater 4:366CrossRefGoogle Scholar
  12. 12.
    Hu CC, Chang KH, Lin MC et al (2006) Nano Lett 6:2690CrossRefGoogle Scholar
  13. 13.
    Li N, Martin CR, Scrosati B (2000) Electrochem Solid State Lett 3:316CrossRefGoogle Scholar
  14. 14.
    Li N, Martin CR, Scrosati B (2001) J Power Sources 97–98:240CrossRefGoogle Scholar
  15. 15.
    Patrissi CJ, Martin CR (1999) J Electrochem Soc 146:3176CrossRefGoogle Scholar
  16. 16.
    Pan JQ, Sun YZh, Wang ZH et al (2007) J Mater Chem 17:4820CrossRefGoogle Scholar
  17. 17.
    Hu ZhA, Ch Kong, Han YX et al (2007) Mater Lett 61:3931CrossRefGoogle Scholar
  18. 18.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  19. 19.
    Huang QH, Wang XY, Li J et al (2007) J Power Sources 164:425CrossRefGoogle Scholar
  20. 20.
    Cao L, Xu F, Liang YY et al (2004) Adv Mater 16:1853CrossRefGoogle Scholar
  21. 21.
    Gupta V, Gupta S, Miura N (2008) J Power Sources 175:680CrossRefGoogle Scholar
  22. 22.
    Zhang HX, Zhang ML (2008) Mater Chem Phys 108:184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zhong-Ai Hu
    • 1
  • Yao-Xian Wang
    • 1
  • Yu-Long Xie
    • 1
  • Yu-Ying Yang
    • 1
  • Zi-Yu Zhang
    • 1
  • Hong-Ying Wu
    • 1
  1. 1.Key Laboratory of Polymer, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations