Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 7, pp 1045–1051 | Cite as

Influence of ethylene glycol, ethanol and formic acid on platinum and ruthenium electrodeposition on carbon support material

  • Juan Manuel Sieben
  • Marta M. E. Duarte
  • Carlos E. Mayer
  • Julio C. Bazán
Original Paper

Abstract

Carbon supported Pt–Ru catalysts were prepared by potentiostatic deposition at −0.5 V from H2PtCl6 + RuCl3 in H2SO4 solution in the presence of ethylene glycol (EG), ethanol (EtOH) and formic acid (HCOOH) as stabilizing agents. The active surface area of the Pt–Ru catalyst was determined by Cu-UPD. The highest value was obtained with HCOOH added, followed by EtOH, and EG. SEM and AFM images showed that the mean particle size of the Pt–Ru nanoparticles was three or four times smaller in the presence of a stabilizer. Electrocatalytic activity measurements indicated that the most active electrode for methanol electrooxidation was obtained with EtOH as additive, followed by EG. The electrode prepared with HCOOH additive gave lower catalytic activity than that without stabilizing agent.

Keywords

Pt–Ru nanostructured catalyst Electrodeposition Ethylene glycol Ethanol Formic acid Methanol oxidation 

Notes

Acknowledgements

This work was supported by ANPCYT Grant No. 10-11133l, CIC and SECyT UNS, Argentina. J.M. Sieben acknowledges CONICET for a doctoral fellowship. The assistance by M.E. Brigante in the UV-vis measurements is also acknowledged.

References

  1. 1.
    Rao CRK, Trivedi DC (2005) Coord Chem Rev 249:613CrossRefGoogle Scholar
  2. 2.
    Coutanceau C, Rakotondrainibe AF et al (2004) J Appl Electrochem 34:61CrossRefGoogle Scholar
  3. 3.
    Wei ZD, Chan SH (2004) J Electroanal Chem 569:23CrossRefGoogle Scholar
  4. 4.
    Wei ZD, Chan SH et al (2005) Electrochim Acta 50:2279CrossRefGoogle Scholar
  5. 5.
    Shen M, Roy S, Scott K (2005) J Appl Electrochem 35:1103CrossRefGoogle Scholar
  6. 6.
    Hogarth MP, Punk J et al (1994) J Appl Electrochem 24:85CrossRefGoogle Scholar
  7. 7.
    Duarte MME, Pilla AS et al (2006) Electrochem Commun 8:159CrossRefGoogle Scholar
  8. 8.
    Maillard F, Gloaguen F, Léger JM (2003) J Appl Electrochem 33:1CrossRefGoogle Scholar
  9. 9.
    Aramata A, Kodera T, Masuda M (1988) J Appl Electrochem 18:577CrossRefGoogle Scholar
  10. 10.
    Niu L, Li Q et al (2005) J Electroanal Chem 578:331CrossRefGoogle Scholar
  11. 11.
    Lee CH, Lee CW et al (2002) Int J Hydrogen Energy 27:445CrossRefGoogle Scholar
  12. 12.
    Tusseeva EK, Mikhaylova AA et al (2004) Russian J Electrochem 40:1146CrossRefGoogle Scholar
  13. 13.
    Chrzanowski W, Wieckowski A (1997) Langmuir 13:5974CrossRefGoogle Scholar
  14. 14.
    Vigier F, Gloaguen F et al (2001) Electrochim Acta 46:4331CrossRefGoogle Scholar
  15. 15.
    Iúdice de Souza JP, Iwasita T et al (2000) J Appl Electrochem 30:43CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Nieto FJ, Morante-Catacora TY, Cabrera CR (2004) J Electroanal Chem 571:15CrossRefGoogle Scholar
  17. 17.
    Selvaraju T, Ramaraj R (2005) J Electroanal Chem 585:290CrossRefGoogle Scholar
  18. 18.
    Natter H, Hempelmann R (1996) J Phys Chem 100:19525CrossRefGoogle Scholar
  19. 19.
    Alfantazi AM, Erb U (1996) J Mater Sci Lett 15:1361CrossRefGoogle Scholar
  20. 20.
    Dalmia A, Lineken CL, Savinell RF (1998) J Colloid Interface Sci 205:535CrossRefGoogle Scholar
  21. 21.
    Obradović MD, Stevanović RM, Despić AR (2003) J Electroanal Chem 552:185CrossRefGoogle Scholar
  22. 22.
    Younes O, Zhu L et al (2001) Langmuir 17:8270CrossRefGoogle Scholar
  23. 23.
    Guaus E, Torrent-Burgués J (2005) J Electroanal Chem 575:301CrossRefGoogle Scholar
  24. 24.
    Zarkadas GM, Stergiou A, Papanastasiou G (2001) J Appl Electrochem 34:1251CrossRefGoogle Scholar
  25. 25.
    Zarkadas GM, Stergiou A, Papanastasiou G (2005) Electrochim Acta 50:5022CrossRefGoogle Scholar
  26. 26.
    Mu Y, Liang H et al (2005) J Phys Chem B 109:22212CrossRefGoogle Scholar
  27. 27.
    Lordi V, Yao N, Wei J (2001) Chem Mater 13:733CrossRefGoogle Scholar
  28. 28.
    Matsumoto T, Komatsu T et al (2004) Catal Today 90:277CrossRefGoogle Scholar
  29. 29.
    Bock C, Paquet C et al (2004) J Am Chem Soc 126:8028CrossRefGoogle Scholar
  30. 30.
    Duarte MME, Pilla AS et al (1993) An Asoc Quím Argent 81:415Google Scholar
  31. 31.
    Duarte MME, Mayer CE (1997) An Asoc Quím Argent 85:27Google Scholar
  32. 32.
    Randin JP (1976) In: Bard J (ed) Encyclopedia of Electrochemistry of the Elements, vol 7. Marcel Dekker, New York, p 22Google Scholar
  33. 33.
    Olender H, O’Grady WE et al (1982) J Appl Electrochem 12:135CrossRefGoogle Scholar
  34. 34.
    Jovanović DM, Terzić S et al (2004) Electrochem Commun 6:1254CrossRefGoogle Scholar
  35. 35.
    Antonucci PL, Alderucci V et al (1994) J Appl Electrochem 24:58CrossRefGoogle Scholar
  36. 36.
    Green CL, Kucernak A (2002) J Phys Chem B 106:1036CrossRefGoogle Scholar
  37. 37.
    Sieben JM, Duarte MME, Mayer CE (2008) J Appl Electrochem 38:483CrossRefGoogle Scholar
  38. 38.
    Ravadullar JF, Vergara MC et al (1997) J Phys Chem B 101:8997CrossRefGoogle Scholar
  39. 39.
    Henglein A, Ershov BG, Malow M (1995) J Phys Chem 99:14129CrossRefGoogle Scholar
  40. 40.
    Teranashi T, Hosoe M et al (1999) J Phys Chem B 103:3818CrossRefGoogle Scholar
  41. 41.
    Pârvulescu VI, Coman S et al (1999) Appl Surf Sci 141:164CrossRefGoogle Scholar
  42. 42.
    Duff DG, Edwards PP, Johnson BFG (1995) J Phys Chem 99:15934CrossRefGoogle Scholar
  43. 43.
    Chen S, Kimura K (2001) J Phys Chem B 105:5397CrossRefGoogle Scholar
  44. 44.
    Chen ChW, Takezako T et al (2000) Colloids Surf A 169:107CrossRefGoogle Scholar
  45. 45.
    Creighton A, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881CrossRefGoogle Scholar
  46. 46.
    Zhou Z, Zhou W et al (2004) Catal Today 93–95:523CrossRefGoogle Scholar
  47. 47.
    Wang H, Zhao Y et al (2006) J Power Sources 155:33CrossRefGoogle Scholar
  48. 48.
    Israelachvili N (1992) Intermolecular and surface forces, 2nd edn. Academic Press, New York, p 248Google Scholar
  49. 49.
    Bouyer F, Foissy A (1999) J Am Ceram Soc 82:2001CrossRefGoogle Scholar
  50. 50.
    Besra L, Liu M (2007) Progress Mater Sci 52:1CrossRefGoogle Scholar
  51. 51.
    Plyasova LM, IYu Molina et al (2006) Electrochim Acta 51:4477CrossRefGoogle Scholar
  52. 52.
    Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186CrossRefGoogle Scholar
  53. 53.
    de Oliveira GM, Barbosa LL et al (2005) J Electroanal Chem 578:151CrossRefGoogle Scholar
  54. 54.
    Tsai MCh, Yeh TK, Tsai ChH (2006) Electrochem Commun 8:1445CrossRefGoogle Scholar
  55. 55.
    Watanabe M, Motoo S (1976) J Electroanal Chem 69:429CrossRefGoogle Scholar
  56. 56.
    Gasteiger HA, Marković N et al (1994) J Electrochem Soc 141:1795CrossRefGoogle Scholar
  57. 57.
    Gasteiger HA, Marcović N et al (1993) J Phys Chem 97:12020CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Juan Manuel Sieben
    • 1
  • Marta M. E. Duarte
    • 1
    • 2
  • Carlos E. Mayer
    • 1
    • 2
  • Julio C. Bazán
    • 2
    • 3
  1. 1.Instituto de Ingeniería Electroquímica y Corrosión (INIEC)Bahía BlancaArgentina
  2. 2.Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)Buenos AiresArgentina
  3. 3.Departamento de QuímicaUniversidad Nacional del Sur. Av. Alem 1253Bahía BlancaArgentina

Personalised recommendations