Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 5, pp 737–745 | Cite as

Effect of alternating voltage passivation on the corrosion resistance of duplex stainless steel

  • Huan He
  • Tao Zhang
  • Chengzhi Zhao
  • Kai Hou
  • Guozhe Meng
  • Yawei Shao
  • Fuhui Wang
Original Paper

Abstract

Potentiodynamic polarization and E corr versus t curves were obtained, together with electrochemical impedance spectroscopy (EIS) measurements, in order to understand the effects of alternating voltage (AV) passivation on the corrosion resistance of duplex stainless steel (DSS). SEM, EDS and XPS were employed to further investigate the influence of AV passivation on the properties of the passive film. The results of the electrochemical measurements showed that AV passivation significantly improved the corrosion resistance of DSS. SEM images indicated that the surface exhibited a unique morphology after AV passivation treatment, and XPS results suggested that AV passivation greatly increased the thickness of the passive film. Furthermore, significant chromium enrichment and a higher ratio of Fe3+/Fe2+ were observed in the passive film after AV passivation. Mott–Schottky results confirmed that AV passivation had a strong influence on the semiconducting properties of the passive film.

Keywords

Duplex stainless steel Alternating voltage passivation Passive film Corrosion XPS analysis 

Notes

Acknowledgments

The financial support from Harbin Science and Technology Board under the contract No. 2006AA4CG070 and the research fund of Harbin Engineering University No. heuft05015 are gratefully acknowledged.

References

  1. 1.
    Muthupandi V, Srinivasan P, Seshadri K, Sundaresan S (2003) Mater Sci Eng A358:9Google Scholar
  2. 2.
    Távara S, Chapetti M, Otegui J, Manfredi C (2001) Int J Fatigue 23:619CrossRefGoogle Scholar
  3. 3.
    Sedriks A (1986) Corrosion 42:376Google Scholar
  4. 4.
    Olsson C, Landolt D (2003) Electrochim Acta 48:1093CrossRefGoogle Scholar
  5. 5.
    Schultze J, Lohrengel M (2000) Electrochim Acta 45:2499CrossRefGoogle Scholar
  6. 6.
    Pérez F, Hierro M, Gómez C, Martínez L, Viguri P (2002) Surf Coat Tech 155:250Google Scholar
  7. 7.
    Pan Q, Huang W, Song R, Zhou Y, Zhang G (1998) Surf Coat Tech 102:245CrossRefGoogle Scholar
  8. 8.
    Kwiatkowski L, Mansfeld F (1993) J Electrochem Soc 140:L39CrossRefGoogle Scholar
  9. 9.
    Mansfeld F, Lin S, Kwiatkowski L (1993) Corros Sci 34:2045CrossRefGoogle Scholar
  10. 10.
    Song G, Cao C, Lin H (1993) Corrosion 49:271CrossRefGoogle Scholar
  11. 11.
    Muñoz A, Antón J, Guiñón J, Pérez V (2007) Corros Sci 49:3200CrossRefGoogle Scholar
  12. 12.
    Cortie M, Potgieter J (1991) Met Trans 22A:2173Google Scholar
  13. 13.
    Vannevik H, Nilsson J, Frodigh J, Kangas P (1996) ISIJ Int 36:807CrossRefGoogle Scholar
  14. 14.
    Kircheim R, Heine B, Fishmeister H, Hofmann S, Knote H, Stolz V (1989) Corros Sci 29:899CrossRefGoogle Scholar
  15. 15.
    Sikora E, Macdonald D (2002) Electrochim Acta 48:69CrossRefGoogle Scholar
  16. 16.
    Goodlet G, Faty S, Cardoso S, Freitas P, Simõse A, Ferreira M, Belo M (2004) Corros Sci 46:1479CrossRefGoogle Scholar
  17. 17.
    Carmezim M, Simões A, Montemor M, Belo M (2005) Corros Sci 47:581CrossRefGoogle Scholar
  18. 18.
    Simões A, Ferreira M, Rondot B, Belo M (1990) J Electrochem Soc 137:82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Huan He
    • 1
  • Tao Zhang
    • 1
    • 2
  • Chengzhi Zhao
    • 1
  • Kai Hou
    • 1
  • Guozhe Meng
    • 1
    • 2
  • Yawei Shao
    • 1
    • 2
  • Fuhui Wang
    • 1
    • 2
  1. 1.Corrosion and Protection Laboratory, College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.State Key Laboratory for Corrosion and Protection, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations