Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

  • Noureddine Belhadj Tahar
  • Ridha Abdelhédi
  • André Savall
Original Paper


This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%.


Waste water treatments Electrochemical polymerisation Phenol PbO2 anode 


  1. 1.
    Vitt JE, Johnson DC (1992) J Electrochem Soc 139:774CrossRefGoogle Scholar
  2. 2.
    Comninellis Ch, Pulgarin C (1993) J Appl Electrochem 23:108CrossRefGoogle Scholar
  3. 3.
    Belhadj Tahar N (1996) Thesis. Université Paul Sabatier, ToulouseGoogle Scholar
  4. 4.
    Belhadj Tahar N, Savall A (1997) In: Weaver RD, Fisher F, Kalhammer FR, Mazur D (eds) Fundamentals and potential applications of electrochemical synthesis, Electrochemical Society, Pennington, NJGoogle Scholar
  5. 5.
    Belhadj Tahar N, Savall A (1998) J Electrochem Soc 145:3427CrossRefGoogle Scholar
  6. 6.
    Belhadj Tahar N, Savall A (1999) J Appl Electrochem 29:277CrossRefGoogle Scholar
  7. 7.
    Fleszar B, Ploszynska J (1985) Electrochim Acta 30:31CrossRefGoogle Scholar
  8. 8.
    Chang H, Johnson DC (1989) J Electrochem Soc 136:17CrossRefGoogle Scholar
  9. 9.
    Yeo IH, Kim S, Jacobson R, Johnson DC (1989) J Electrochem Soc 136:1395CrossRefGoogle Scholar
  10. 10.
    Comninellis Ch (1994) Electrochim Acta 39:1857CrossRefGoogle Scholar
  11. 11.
    Feng J, Hook LL, Johnson DC (1995) J Electrochem Soc 142:3626CrossRefGoogle Scholar
  12. 12.
    Trasatti S, Lodi G (1981) In: Trasatti S (eds) Electrodes of conductive metallic oxides, Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Trasatti S (1994) In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials, VCH, WeinheimGoogle Scholar
  14. 14.
    Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis Ch (2001) Electrochim Acta 46:3573CrossRefGoogle Scholar
  15. 15.
    Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis Ch (2001) J Electrochem Soc 148:D60CrossRefGoogle Scholar
  16. 16.
    Panizza M, Michaud PA, Cerisola G, Comninellis Ch (2001) J Electroanal chem 507:206CrossRefGoogle Scholar
  17. 17.
    Codognoto L, Machado SAS, Avaca LA (2003) J Appl Electrochem 33:951CrossRefGoogle Scholar
  18. 18.
    Sharifian H, Kirk DW (1986) J Electrochem Soc 133:921CrossRefGoogle Scholar
  19. 19.
    Comninellis Ch, Pulgarin C (1991) J Appl Electrochem 121:703CrossRefGoogle Scholar
  20. 20.
    Papouchado L, Sandford RW, Petrie G, Adams RN (1975) J Electroanal Chem 65:275CrossRefGoogle Scholar
  21. 21.
    Fleischmann M, Hill IR, Mengoli G, Musiani MM (1983) Electrochim Acta 28:1545CrossRefGoogle Scholar
  22. 22.
    Gattrell M, Kirk DW (1990) Can J Chem Eng 68:997CrossRefGoogle Scholar
  23. 23.
    Gattrell M, Kirk DW (1993) J Electrochem Soc 140:1534CrossRefGoogle Scholar
  24. 24.
    Canizares P, Garcia-Gomez J, Saez C, Rodrigo MA (2003) J Appl Electrochem 33:917CrossRefGoogle Scholar
  25. 25.
    Canizares P, Saez C, Lobato J, Rodrigo MA (2004) Ind Eng Chem Res 43:1944CrossRefGoogle Scholar
  26. 26.
    Vermillion FJ, Pearl IA (1964) J Electrochem Soc 111:1392CrossRefGoogle Scholar
  27. 27.
    Mengoli G, Musiani MM (1987) J Electrochem Soc 134:643 CCrossRefGoogle Scholar
  28. 28.
    Ronlan A, Parker VD (1971) J Chem Soc (C) 19:3214Google Scholar
  29. 29.
    Bruno F, Pham MC, Dubois JE (1977) Electrochim Acta 22:451CrossRefGoogle Scholar
  30. 30.
    Wang J, Jiang M, Lu F (1998) J Electroanal Chem 444:127CrossRefGoogle Scholar
  31. 31.
    Panizza M, Cerisola G (2003) Electrochim Acta 48:3491CrossRefGoogle Scholar
  32. 32.
    Li X, Cui Y, Feng Y, Xie Z, Gu JD (2005) Water Res 39:1972CrossRefGoogle Scholar
  33. 33.
    Vogt H (1983) In: Yeager J, JO’M Bockris, Conway BE, Sarangapani S (eds) Comprehensive treatise of electrochemistry. Plenum Press, New YorkGoogle Scholar
  34. 34.
    Buxton GV, Wood ND, Dyster S (1988) J Chem Soc, Faraday Trans 1(84):1113Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Noureddine Belhadj Tahar
    • 1
  • Ridha Abdelhédi
    • 1
  • André Savall
    • 2
  1. 1.UR Electrochimie et EnvironnementEcole Nationale d’Ingénieurs de Sfax, BPWSfaxTunisia
  2. 2.Laboratoire de Génie ChimiqueCNRS, Université Paul SabatierToulouse cedexFrance

Personalised recommendations