Skip to main content
Log in

Electrochemical desulfurization of geothermal fluids under high temperature and pressure

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical removal of sulfide ions was achieved in salt water using graphite anodes in an autoclave under high temperatures and pressures, simulating geothermal fluids. The reaction products were characterized using microscopy and X-ray photoelectron spectroscopy (XPS). At low temperatures the reaction rate is quite small. It decreases rapidly with time down to a negligibly small value, which increases only slightly with temperature. The reaction produces elemental sulfur, which was seen under the microscope and identified using XPS. It passivates the electrode and hence diminishes its activity. Above about 115 °C, much higher removal rates can be sustained for much longer times, while the increase of temperature has a much stronger effect on the reaction rate. Under this condition, elemental sulfur was no longer detected among the reaction products, while the electrode retained its activity for continuous operation. The XPS spectra at high temperatures reveal the presence of oxygen bearing sulfur species, such as sulfates. The melting of sulfur (at 115 °C) has a much stronger effect on the efficiency of the process than the transition of orthorhombic to monoclinic sulfur (at 95 °C). A Clausius-Clapeyron’s analysis reveals that the melting point of sulfur inside the autoclave is nearly equal to its normal melting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency (1988) Extremely hazardous substance: superfund chemical profiles, CAS registry number 7783-06-4, vol 1. Noys Data Corporation, New Jersey

    Google Scholar 

  2. Tuttle RN, Kane RD (eds) (1981) H2S corrosion in oil and gas production. National Association of Corrosion Engineers, Houston, Texas

    Google Scholar 

  3. Garverick L (ed) (1994) Corrosion in the petrochemical industry. ASM International, Metals Park, Ohio, p 259

    Google Scholar 

  4. Kagel A (2008) The state of geothermal technology, part II: surface technology. The Department of Energy, Washington, DC, p 5

    Google Scholar 

  5. Clauser C (2006) Geothermal energy, In Heinloth K (ed), Landolt-Börnstein, group VIII: Advanced materials and technologies, vol 3: energy technologies, subvol. C: renewable energies, Springer Verlag, Heidelberg-Berlin, 493–604, p 98

  6. Xu Y, Shonnen MAA, Nordstram DK, Cunningham KM, Ball JW (2000) J Volcanol Geotherm Res 97:407

    Article  CAS  Google Scholar 

  7. Cutter GA, Walsh RS, de Echols CS (1999) Deep-Sea Res II 46:991

    Article  CAS  Google Scholar 

  8. Rajalo G, Petrovskaya T (1996) Environ Technol 17:605

    Article  CAS  Google Scholar 

  9. Rao NN, Somasekhar KM, Kaul SN, Szpyrkowicz L (2001) J Chem Technol Biotechnol 76:1124

    Article  CAS  Google Scholar 

  10. Szpyrkowicz L, Kaul SN, Neti RN (2005) J Appl Electrochem 35:381

    Article  CAS  Google Scholar 

  11. Behm M, Simonsson D (1997) J Appl Electrochem 27:507

    Article  CAS  Google Scholar 

  12. Garrett RL, Clark RK, Carney LL, Granthm CK (1997) Chemical scavengers for sulfides in water-based drilling fluids, SPE Reprint Series, 44:170

  13. Singh AK, Kohil BS, Wendt RP (1989) World Oil, 209:99, 77

  14. Al-Humaidan AY, Nasr-El-Din HA (1999) Optimization of hydrogen sulfide scavengers used during well stimulation, In: Proceedings of the SPE international symposium on oilfield chemistry

  15. Schorling P Chr, Brauchle M (2001) Application of hydrogen sulfide scavengers in the oil and gas field, Erdoel Ergas Kohle/EKEP, 117:78

  16. Scott P (1994) Oil Gas J 92:72

    CAS  Google Scholar 

  17. Weil ED, Sandler SR, (1991) Sulfur Compounds, In: Mary Howe-Grant (ed) Kirk-Othmer Encyclopedia of Chemical Technology, vol 23, 4th edn. Wiley, New York

  18. Tatapundi P, Fenton JM (1995) Electrolytic processes for pollution treatment and pollution prevention. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, VCH, Weinheim, V 4 364

  19. Lloyd CL, Gilbert II (1994) J. Electrochem. Soc. 141:2642

    Article  CAS  Google Scholar 

  20. Pujare NU, Tsai KJ, Sammells AF (1989) J Electrochem Soc 136:3662

    Article  CAS  Google Scholar 

  21. Schmidt DS, Winnick J (1998) AIchEJ 44:323

    Article  CAS  Google Scholar 

  22. Anani A, Mao Z, White RE, Srinivasan S, Appleby AJ (1990) J Electrochem Soc 137:2703

    Article  CAS  Google Scholar 

  23. Mao Z, Anani A, White RE, Srinivasan S, Appleby AJ (1991) J Electrochem Soc 138:1299

    Article  CAS  Google Scholar 

  24. Ateya BG, AlKharafi FM, Alazab AS, Abdullah AM (2007) J Appl Electrochem 37:395

    Article  CAS  Google Scholar 

  25. Briggs D, Seah MP (1990) Practical surface analysis. Wiley, New York, p 605

    Google Scholar 

  26. Gerson AR, Bredow T (2000) Surf Interface Anal 29:145

    Article  CAS  Google Scholar 

  27. Ateya BG, AlKharafi FM, Abdullah RM, Alazab AS (2005) J Appl Electrochem 35:297

    Article  CAS  Google Scholar 

  28. Zhdanow SI (1982) In Bard AJ (ed) Encyclopedia of the electrochemistry of the elements 6, Marcel Dekker Inc, New York

  29. Bard AJ, Parson R, Jordan J (ed) (1985) Standard potentials in aqueous solutions, Marcel Dekker Inc., New York, p 94

  30. Valensi G, van Muylder J, Pourbaix M (1974) In: Pourbaix M (ed) Atlas of electrochemical equilibria in aqueous media. NACE, Texas, p 545

    Google Scholar 

  31. Stefánsson A, Gunnarsson I (2005) Sulphur geochemistry of hydrothermal waters I. Report of preliminary study. Institute of Earth Sciences Report, RH-17

  32. Kaasalainen H, Stefansson A (2008) The chemistry of sulfur in volcanic geothermal fluids Geochemica Et Cosmochimica Acta 72–12: A443–A443

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Research Administration of Kuwait University, under Grant numbers SC04/04 and GS01/01. They also acknowledge the help of the unit of Electron Microscopy for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Ateya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ateya, B.G., Al Kharafi, F.M., El-Shamy, A.M. et al. Electrochemical desulfurization of geothermal fluids under high temperature and pressure. J Appl Electrochem 39, 383–389 (2009). https://doi.org/10.1007/s10800-008-9683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9683-3

Keywords

Navigation