Journal of Applied Electrochemistry

, Volume 39, Issue 3, pp 383–389 | Cite as

Electrochemical desulfurization of geothermal fluids under high temperature and pressure

  • B. G. Ateya
  • F. M. Al Kharafi
  • A. M. El-Shamy
  • A. Y. Saad
  • R. M. Abdalla
Original Paper


Electrochemical removal of sulfide ions was achieved in salt water using graphite anodes in an autoclave under high temperatures and pressures, simulating geothermal fluids. The reaction products were characterized using microscopy and X-ray photoelectron spectroscopy (XPS). At low temperatures the reaction rate is quite small. It decreases rapidly with time down to a negligibly small value, which increases only slightly with temperature. The reaction produces elemental sulfur, which was seen under the microscope and identified using XPS. It passivates the electrode and hence diminishes its activity. Above about 115 °C, much higher removal rates can be sustained for much longer times, while the increase of temperature has a much stronger effect on the reaction rate. Under this condition, elemental sulfur was no longer detected among the reaction products, while the electrode retained its activity for continuous operation. The XPS spectra at high temperatures reveal the presence of oxygen bearing sulfur species, such as sulfates. The melting of sulfur (at 115 °C) has a much stronger effect on the efficiency of the process than the transition of orthorhombic to monoclinic sulfur (at 95 °C). A Clausius-Clapeyron’s analysis reveals that the melting point of sulfur inside the autoclave is nearly equal to its normal melting point.


Sulfide Oxidation High temperature High pressure Melting point XPS Sulfur Sulfates Geothermal fluids 



The authors gratefully acknowledge the support of this work by the Research Administration of Kuwait University, under Grant numbers SC04/04 and GS01/01. They also acknowledge the help of the unit of Electron Microscopy for the SEM measurements.


  1. 1.
    U.S. Environmental Protection Agency (1988) Extremely hazardous substance: superfund chemical profiles, CAS registry number 7783-06-4, vol 1. Noys Data Corporation, New JerseyGoogle Scholar
  2. 2.
    Tuttle RN, Kane RD (eds) (1981) H2S corrosion in oil and gas production. National Association of Corrosion Engineers, Houston, TexasGoogle Scholar
  3. 3.
    Garverick L (ed) (1994) Corrosion in the petrochemical industry. ASM International, Metals Park, Ohio, p 259Google Scholar
  4. 4.
    Kagel A (2008) The state of geothermal technology, part II: surface technology. The Department of Energy, Washington, DC, p 5Google Scholar
  5. 5.
    Clauser C (2006) Geothermal energy, In Heinloth K (ed), Landolt-Börnstein, group VIII: Advanced materials and technologies, vol 3: energy technologies, subvol. C: renewable energies, Springer Verlag, Heidelberg-Berlin, 493–604, p 98Google Scholar
  6. 6.
    Xu Y, Shonnen MAA, Nordstram DK, Cunningham KM, Ball JW (2000) J Volcanol Geotherm Res 97:407CrossRefGoogle Scholar
  7. 7.
    Cutter GA, Walsh RS, de Echols CS (1999) Deep-Sea Res II 46:991CrossRefGoogle Scholar
  8. 8.
    Rajalo G, Petrovskaya T (1996) Environ Technol 17:605CrossRefGoogle Scholar
  9. 9.
    Rao NN, Somasekhar KM, Kaul SN, Szpyrkowicz L (2001) J Chem Technol Biotechnol 76:1124CrossRefGoogle Scholar
  10. 10.
    Szpyrkowicz L, Kaul SN, Neti RN (2005) J Appl Electrochem 35:381CrossRefGoogle Scholar
  11. 11.
    Behm M, Simonsson D (1997) J Appl Electrochem 27:507CrossRefGoogle Scholar
  12. 12.
    Garrett RL, Clark RK, Carney LL, Granthm CK (1997) Chemical scavengers for sulfides in water-based drilling fluids, SPE Reprint Series, 44:170Google Scholar
  13. 13.
    Singh AK, Kohil BS, Wendt RP (1989) World Oil, 209:99, 77Google Scholar
  14. 14.
    Al-Humaidan AY, Nasr-El-Din HA (1999) Optimization of hydrogen sulfide scavengers used during well stimulation, In: Proceedings of the SPE international symposium on oilfield chemistryGoogle Scholar
  15. 15.
    Schorling P Chr, Brauchle M (2001) Application of hydrogen sulfide scavengers in the oil and gas field, Erdoel Ergas Kohle/EKEP, 117:78Google Scholar
  16. 16.
    Scott P (1994) Oil Gas J 92:72Google Scholar
  17. 17.
    Weil ED, Sandler SR, (1991) Sulfur Compounds, In: Mary Howe-Grant (ed) Kirk-Othmer Encyclopedia of Chemical Technology, vol 23, 4th edn. Wiley, New YorkGoogle Scholar
  18. 18.
    Tatapundi P, Fenton JM (1995) Electrolytic processes for pollution treatment and pollution prevention. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, VCH, Weinheim, V 4 364Google Scholar
  19. 19.
    Lloyd CL, Gilbert II (1994) J. Electrochem. Soc. 141:2642CrossRefGoogle Scholar
  20. 20.
    Pujare NU, Tsai KJ, Sammells AF (1989) J Electrochem Soc 136:3662CrossRefGoogle Scholar
  21. 21.
    Schmidt DS, Winnick J (1998) AIchEJ 44:323CrossRefGoogle Scholar
  22. 22.
    Anani A, Mao Z, White RE, Srinivasan S, Appleby AJ (1990) J Electrochem Soc 137:2703CrossRefGoogle Scholar
  23. 23.
    Mao Z, Anani A, White RE, Srinivasan S, Appleby AJ (1991) J Electrochem Soc 138:1299CrossRefGoogle Scholar
  24. 24.
    Ateya BG, AlKharafi FM, Alazab AS, Abdullah AM (2007) J Appl Electrochem 37:395CrossRefGoogle Scholar
  25. 25.
    Briggs D, Seah MP (1990) Practical surface analysis. Wiley, New York, p 605Google Scholar
  26. 26.
    Gerson AR, Bredow T (2000) Surf Interface Anal 29:145CrossRefGoogle Scholar
  27. 27.
    Ateya BG, AlKharafi FM, Abdullah RM, Alazab AS (2005) J Appl Electrochem 35:297CrossRefGoogle Scholar
  28. 28.
    Zhdanow SI (1982) In Bard AJ (ed) Encyclopedia of the electrochemistry of the elements 6, Marcel Dekker Inc, New YorkGoogle Scholar
  29. 29.
    Bard AJ, Parson R, Jordan J (ed) (1985) Standard potentials in aqueous solutions, Marcel Dekker Inc., New York, p 94Google Scholar
  30. 30.
    Valensi G, van Muylder J, Pourbaix M (1974) In: Pourbaix M (ed) Atlas of electrochemical equilibria in aqueous media. NACE, Texas, p 545Google Scholar
  31. 31.
    Stefánsson A, Gunnarsson I (2005) Sulphur geochemistry of hydrothermal waters I. Report of preliminary study. Institute of Earth Sciences Report, RH-17Google Scholar
  32. 32.
    Kaasalainen H, Stefansson A (2008) The chemistry of sulfur in volcanic geothermal fluids Geochemica Et Cosmochimica Acta 72–12: A443–A443Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • B. G. Ateya
    • 1
    • 2
  • F. M. Al Kharafi
    • 1
  • A. M. El-Shamy
    • 1
  • A. Y. Saad
    • 1
  • R. M. Abdalla
    • 1
  1. 1.Chemistry Department, Faculty of ScienceKuwait UniversitySafatKuwait
  2. 2.Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations