Journal of Applied Electrochemistry

, Volume 39, Issue 2, pp 197–204 | Cite as

Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution

  • I. Roche
  • K. Scott
Original Paper


Manganese oxides (MnO x ) catalysts were chemically deposited onto various high specific surface area carbons. The MnO x /C electrocatalysts were characterised using a rotating disk electrode and found to be promising as alternative, non-platinised, catalysts for the oxygen reduction reaction (ORR) in neutral pH solution. As such they were considered suitable as cathode materials for microbial fuel cells (MFCs). Metal [Ni, Mg] ion doped MnO x /C, exhibited greater activity towards the ORR than the un-doped MnO x /C. Divalent metals favour oxygen bond splitting and thus orientate the ORR mechanism towards the 4-electron reduction, yielding less peroxide as an intermediate.


Oxygen reduction reaction Microbial fuel cell Manganese oxides Neutral pH Electrocatalysis 



This research was support by the European Union through a Transfer of Knowledge award on biological fuel cells (contract MTKD-CT-2004-517215).


  1. 1.
    Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Biosens Bioelectron 18:327CrossRefGoogle Scholar
  2. 2.
    Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Process Biochem 39:1007CrossRefGoogle Scholar
  3. 3.
    Pham TH, Jang JK, Chang IS, Kim BH (2004) J Microbiol Biotechnol 14:324Google Scholar
  4. 4.
    Kinoshita K (1992) In: Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  5. 5.
    HaoYu E, Cheng S, Scott K, Logan B (2007) J Power Sources 171:275CrossRefGoogle Scholar
  6. 6.
    Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Environ Sci Technol 41:7564CrossRefGoogle Scholar
  7. 7.
    Nguyen Cong H, Chartier P, Brenet J (1977) J Appl Electrochem 7:383–395CrossRefGoogle Scholar
  8. 8.
    Heller-Ling N, Poillerat G, Koenig JF, Gautier JL, Chartier P (1994) Electrochim Acta 39:1669CrossRefGoogle Scholar
  9. 9.
    Calegaro ML, Lima FHB, Ticianelli EA (2006) J Power Sources 158:735CrossRefGoogle Scholar
  10. 10.
    Bezdička P, Grygar T, Klápště B, Vondrák J (1999) Electrochim Acta 45:913CrossRefGoogle Scholar
  11. 11.
    Klápště B, Vondrák J, Velická J (2002) Electrochim Acta 47:2365CrossRefGoogle Scholar
  12. 12.
    Vondrák J, Klápště B, Velická J, Sedlaříková M, Reiter J, Roche I, Chainet E, Fauvarque JF, Chatenet M (2005) J New Mater Electrochem Syst 8:209Google Scholar
  13. 13.
    Roche I, Chainet E, Chatenet M, Vondrák J (2007) J Phys Chem C 111:1434CrossRefGoogle Scholar
  14. 14.
    Roche I (2007) Thèse de doctorat, INPGGoogle Scholar
  15. 15.
    Zhang XG, Shen CM, Li HL (2001) Mater Res Bull 36:541CrossRefGoogle Scholar
  16. 16.
    Warren BE (1990) In: X-ray diffraction. Dover Publications, Dover, New York, p 251Google Scholar
  17. 17.
    Pourbaix M (1963) In: Atlas d’équilibres électrochimiques. Gauthier-Villard, ParisGoogle Scholar
  18. 18.
    Kozawa A, Yeager JF (1965) J Electrochem Soc 112:959CrossRefGoogle Scholar
  19. 19.
    Diard JP, Le Gorrec B, Montella C (1996) In: Cinétique Electrochimique. Herman, ParisGoogle Scholar
  20. 20.
    Gloaguen F, Andolfatto D, Durand R, Ozil P (1994) J Appl Electrochem 24:863CrossRefGoogle Scholar
  21. 21.
    Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Electrochim Acta 48:1015CrossRefGoogle Scholar
  22. 22.
    Roche I, Chainet E, Chatenet M, Vondrák J (2008) J Appl Electrochem (in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced Materials, University of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations