Advertisement

Journal of Applied Electrochemistry

, Volume 39, Issue 2, pp 197–204 | Cite as

Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution

  • I. Roche
  • K. Scott
Original Paper

Abstract

Manganese oxides (MnO x ) catalysts were chemically deposited onto various high specific surface area carbons. The MnO x /C electrocatalysts were characterised using a rotating disk electrode and found to be promising as alternative, non-platinised, catalysts for the oxygen reduction reaction (ORR) in neutral pH solution. As such they were considered suitable as cathode materials for microbial fuel cells (MFCs). Metal [Ni, Mg] ion doped MnO x /C, exhibited greater activity towards the ORR than the un-doped MnO x /C. Divalent metals favour oxygen bond splitting and thus orientate the ORR mechanism towards the 4-electron reduction, yielding less peroxide as an intermediate.

Keywords

Oxygen reduction reaction Microbial fuel cell Manganese oxides Neutral pH Electrocatalysis 

Notes

Acknowledgments

This research was support by the European Union through a Transfer of Knowledge award on biological fuel cells (contract MTKD-CT-2004-517215).

References

  1. 1.
    Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Biosens Bioelectron 18:327CrossRefGoogle Scholar
  2. 2.
    Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Process Biochem 39:1007CrossRefGoogle Scholar
  3. 3.
    Pham TH, Jang JK, Chang IS, Kim BH (2004) J Microbiol Biotechnol 14:324Google Scholar
  4. 4.
    Kinoshita K (1992) In: Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  5. 5.
    HaoYu E, Cheng S, Scott K, Logan B (2007) J Power Sources 171:275CrossRefGoogle Scholar
  6. 6.
    Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Environ Sci Technol 41:7564CrossRefGoogle Scholar
  7. 7.
    Nguyen Cong H, Chartier P, Brenet J (1977) J Appl Electrochem 7:383–395CrossRefGoogle Scholar
  8. 8.
    Heller-Ling N, Poillerat G, Koenig JF, Gautier JL, Chartier P (1994) Electrochim Acta 39:1669CrossRefGoogle Scholar
  9. 9.
    Calegaro ML, Lima FHB, Ticianelli EA (2006) J Power Sources 158:735CrossRefGoogle Scholar
  10. 10.
    Bezdička P, Grygar T, Klápště B, Vondrák J (1999) Electrochim Acta 45:913CrossRefGoogle Scholar
  11. 11.
    Klápště B, Vondrák J, Velická J (2002) Electrochim Acta 47:2365CrossRefGoogle Scholar
  12. 12.
    Vondrák J, Klápště B, Velická J, Sedlaříková M, Reiter J, Roche I, Chainet E, Fauvarque JF, Chatenet M (2005) J New Mater Electrochem Syst 8:209Google Scholar
  13. 13.
    Roche I, Chainet E, Chatenet M, Vondrák J (2007) J Phys Chem C 111:1434CrossRefGoogle Scholar
  14. 14.
    Roche I (2007) Thèse de doctorat, INPGGoogle Scholar
  15. 15.
    Zhang XG, Shen CM, Li HL (2001) Mater Res Bull 36:541CrossRefGoogle Scholar
  16. 16.
    Warren BE (1990) In: X-ray diffraction. Dover Publications, Dover, New York, p 251Google Scholar
  17. 17.
    Pourbaix M (1963) In: Atlas d’équilibres électrochimiques. Gauthier-Villard, ParisGoogle Scholar
  18. 18.
    Kozawa A, Yeager JF (1965) J Electrochem Soc 112:959CrossRefGoogle Scholar
  19. 19.
    Diard JP, Le Gorrec B, Montella C (1996) In: Cinétique Electrochimique. Herman, ParisGoogle Scholar
  20. 20.
    Gloaguen F, Andolfatto D, Durand R, Ozil P (1994) J Appl Electrochem 24:863CrossRefGoogle Scholar
  21. 21.
    Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Electrochim Acta 48:1015CrossRefGoogle Scholar
  22. 22.
    Roche I, Chainet E, Chatenet M, Vondrák J (2008) J Appl Electrochem (in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced Materials, University of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations