Journal of Applied Electrochemistry

, Volume 39, Issue 1, pp 141–146 | Cite as

Uniform coating of a crystalline TiO2 film onto steel plates by electrochemical deposition using staged pulse current

  • Naoki Suzuki
  • Subbian Karuppuchamy
  • Seishiro Ito
Original Paper


A crystalline TiO2 (c-TiO2) film was electrochemically deposited onto a 10 cm × 20 cm hot-dip-galvanized (HDG) steel plate at 60 °C from an alkaline aqueous solution containing 0.1 M titanium potassium oxalate dehydrate and 1 M hydroxylamine. The electrochemical deposition was carried out by a galvanostatic method. First, a current density of 10 mA cm−2 was applied for 5 min, which led to the formation of a uniform coating of TiO2 on a 1 cm × 1 cm small HDG plate. A crystalline layer was observed, however, only in the central area, whereas the upper and the edge areas were amorphous. Both calculations and experiments confirmed that this was due to the difference of the local current densities in the vicinities of different areas. Next, three different currents (5 mA cm−2 (2 min), 10 mA cm−2 (2 min) and 20 mA cm−2 (1 min)) were applied continuously so that the local current density for each part of the substrate achieved appropriate deposition conditions. The film thus obtained was crystalline in all areas and of uniform thickness.


Crystalline TiO2 Electrochemical deposition Finite element calculation Hot-dip-galvanized steel Staged pulse deposition Uniform coating 



We thank Prof. Takeshi Endo and Prof. Masakuni Yoshihara from Kinki University for valuable discussions. We thank Dr. Matthias Wegener (Henkel KGaA) for supporting the preparation of this manuscript. We also thank Advanced Science Laboratory, Inc. for lending us the software Hiphi.


  1. 1.
    Atik M, Netoa PL, Avaca LA, Aegertera MA (1995) Ceram Int 21:403CrossRefGoogle Scholar
  2. 2.
    Nishimura R, Yamakawa K, Ishiga J, Matsumoto Y, Nagano H (1998) Mater Chem Phys 54:289CrossRefGoogle Scholar
  3. 3.
    Okimura K, Yasumura N (1998) Shinku 3:397 (in Japanese)Google Scholar
  4. 4.
    Meinert K, Uerpmann C, Matschullat J, Wolf GK (1998) Surf Coat Technol 103–104:58CrossRefGoogle Scholar
  5. 5.
    Matero R, Ritala M, Leskelä M, Aromaa J, Forsén O (1999) J Phys IV France 9:Pr8–Pr493CrossRefGoogle Scholar
  6. 6.
    Drews MD, Williams M, Barr M (2000) Ind Eng Chem Res 39:4772CrossRefGoogle Scholar
  7. 7.
    Yan D, He J, Li Z, Liu Y, Zhou Y, Jia D (2001) J Mater Sci Technol 17:7Google Scholar
  8. 8.
    Fallet M, Mahdjoub H, Gautier B, Bauer JP (2001) J Non-Crystalline Solids 293–295:527CrossRefGoogle Scholar
  9. 9.
    Chun DD, Kim JS, Yoon SM, Kim CG (2001) Korean J Chem Eng 18:908CrossRefGoogle Scholar
  10. 10.
    Ono S, Nishi Y, Hirano S (2001) J Am Ceram Soc 84:3054CrossRefGoogle Scholar
  11. 11.
    Karuppuchamy S, Nonomura K, Yoshida Y, Sugiura T, Minoura H (2002) Solid State Ionics 151:19CrossRefGoogle Scholar
  12. 12.
    Ishizaki H, Schweinsberg M, Ito S, Wiechmann F (2005) Eur Pat Appl EP 1548157 A1, 20050629Google Scholar
  13. 13.
    Ishizaki H, Ito S J Electrochem Soc (submitted)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Naoki Suzuki
    • 1
  • Subbian Karuppuchamy
    • 1
  • Seishiro Ito
    • 1
    • 2
  1. 1.Henkel Research Center of Advanced Technology, Molecular InstituteKinki UniversityIizukaJapan
  2. 2.Department of Applied Chemistry, Faculty of Science and EngineeringKinki UniversityHigashi-OsakaJapan

Personalised recommendations