Journal of Applied Electrochemistry

, Volume 38, Issue 11, pp 1609–1621 | Cite as

Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines

  • K. F. Khaled
  • Mohammed A. Amin
Original Paper


The adsorption and corrosion inhibition behaviour of four selected piperidine derivatives, namely piperidine (pip), 2-methylpiperidine (2mp), 3-methylpiperidine (3mp), and 4-methylpiperidine (4mp) at nickel in 1.0 M HNO3 solution were studied computationally by the molecular dynamics simulation and quantum chemical calculations and electrochemically by Tafel and impedance methods. The results indicate a strong dependence of the inhibition performance on the nature of the metal surface, in addition to the structural effects of piperidines. Inhibition is accomplished by adsorption of piperidines on the metal surface without detectable changes in the chemistry of corrosion. Adsorption is predominantly chemisorptive in the active region and by hydrogen bond formation in the passive region. The potential of zero charge (PZC) of the nickel electrode was determined in 1.0 M HNO3 solutions in the absence and presence of 10−2 M 2mp, and the electrostatic (physical) adsorption was discussed. The inhibition efficiency of these compounds increases in the order: 4mp > 3mp > 2mp > pip. Molecular simulation studies were applied to optimize the adsorption structures of piperidine derivatives. The nickel/inhibitor/solvent interfaces were simulated and the charges on the inhibitor molecules as well as their structural parameters were calculated in the presence of solvent effects. Quantum chemical calculations based on the ab initio method were performed to determine the relationship between the molecular structure of piperidines and their inhibition efficiency. Results obtained from Tafel and impedance methods are in good agreement and confirm theoretical studies.


Molecular dynamic simulation Quantum chemical calculations Molecular adsorption Acid corrosion inhibition Impedance 


  1. 1.
    Li QK, Zhang Y, Chu WY (2002) Comput Mater Sci 25:510CrossRefGoogle Scholar
  2. 2.
    San-Miguel MA, Rodger PM (2000) J Mo Struct (Theochem) 506:263Google Scholar
  3. 3.
    Bartley J, Huynh N, Bottle SE, Flitt H, Notoya T, Schweinsberg DP (2003) Corros Sci 45:81CrossRefGoogle Scholar
  4. 4.
    Takahashi M, Qi Y, Nitta H, Nishikawa N, Ohno T (2004) Sci Tech Adv Mater 5:673CrossRefGoogle Scholar
  5. 5.
    Khaled KF (2008) Electrochim Acta 53:3484CrossRefGoogle Scholar
  6. 6.
    Went W, Feller HG (1970) Z Metallik 61:178Google Scholar
  7. 7.
    Garz I, Glazer B (1974) Corros Sci 14:353CrossRefGoogle Scholar
  8. 8.
    Kesten M, Sussek G, Werk U (1976) Korros 77Google Scholar
  9. 9.
    Barkalatsora LA, Pshenicknikov AG (1976) Electrochimiya 12:42Google Scholar
  10. 10.
    Nobe K (1975) MITS Gov. Rep. Announc. Index US. vol 75, p 71Google Scholar
  11. 11.
    Singh MM, Kumar A (1995) Portugaliae Electrochim Acta 3:173Google Scholar
  12. 12.
    Kumar A, Patnaik SK, Singh MM (1998) Mater Chem Phys 56:243CrossRefGoogle Scholar
  13. 13.
    Stupniek-Lisac E, Karulin M (1984) Electrochim Acta 29:1339CrossRefGoogle Scholar
  14. 14.
    Said F, Souissi N, Es-Salah K, Hajjaji N, Triki E, Srhiri A (2007) J Mater Sci 42:9070CrossRefGoogle Scholar
  15. 15.
    Sun H, Ren P, Fried JR (1998) Comput Theor Polym Sci 8:229CrossRefGoogle Scholar
  16. 16.
    Roothaan CCJ (1951) Rev Mod Phys 23:69CrossRefGoogle Scholar
  17. 17.
    Thiel W (2000) Modern methods and algorithms of quantum chemistry (NIC Series) vol 3, p 261Google Scholar
  18. 18.
    HyperChem, Hypercube, Inc., Gainesville, 2002.Google Scholar
  19. 19.
    Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251CrossRefGoogle Scholar
  20. 20.
    Dewar MJS, Liotard DA (1990) J Mol Struct (Theochem) 206:123CrossRefGoogle Scholar
  21. 21.
    Leunberger DG (1973) Introduction to linear and non-linear programming. Addison-Wesley, Don Mills, OntGoogle Scholar
  22. 22.
    Rodrigues-Valdez LM, Villamisar W, Casales M, Gonzalez-Rodriguez JG, Martnez-Villafane A, Martinez L, Glossman-Mitnik D (2006) Corros Sci 48:4053CrossRefGoogle Scholar
  23. 23.
    Lukovits L, Kalman E, Zucchi F (2001) Corrosion 57:3Google Scholar
  24. 24.
    Sastri VS, Perumareddi JR (1997) Corrosion 53:617Google Scholar
  25. 25.
    Duda Y, Fovea-Rueda R, Galicia M, Beltran HI, Zamudio-Rivera LS (2005) J Phys Chem B 109:22674CrossRefGoogle Scholar
  26. 26.
    Fang J, Li J (2002) J Mol Struct (Theochem) 593:179CrossRefGoogle Scholar
  27. 27.
    Bereket G, Hür E, Öğretir C (2002) J Mol Struct (Theochem) 578:79CrossRefGoogle Scholar
  28. 28.
    Zhao P, Liang Q, Li Y (2005) Appl Surf Sci 252:1596CrossRefGoogle Scholar
  29. 29.
    Pearson RG (1986) Proc Nati Acad Sci 83:8440CrossRefGoogle Scholar
  30. 30.
    Pearson RG (1988) Inorg Chem 27:734CrossRefGoogle Scholar
  31. 31.
    Lukovits I, Kalman E, Zucchi F (2001) Corrosion 57:3Google Scholar
  32. 32.
    Goncalves RS, Azombuja DS, Lucho AMS (2002) Corros Sci 44:467CrossRefGoogle Scholar
  33. 33.
    Juttner K (1990) Electrochim Acta 35:1501CrossRefGoogle Scholar
  34. 34.
    Stoynov Z (1990) Electrochim Acta 35:1493CrossRefGoogle Scholar
  35. 35.
    Khaled KF (2006) Appl Surf Sci 252:4120CrossRefGoogle Scholar
  36. 36.
    Amin MA (2006) J Appl Electrochem 36:215CrossRefGoogle Scholar
  37. 37.
    Hassan HH, Abdelghani E, Amin MA (2007) Electrochim Acta 52:6359CrossRefGoogle Scholar
  38. 38.
    Abd El-Rehim SS, El-Sherbini EEF, Bayoumi RS (2007) Electrochim Acta 52:3588CrossRefGoogle Scholar
  39. 39.
    Mehaute AH, Grepy G (1989) Solid State Ionics 910:17Google Scholar
  40. 40.
    Reinhard G, Rammet U (1985) Proceedings of the 6th European Symposium on Corrosion Inhibitors. Ferrara, p 831Google Scholar
  41. 41.
    Lukomska A, Sobkowski J (2004) J Electroanal Chem 567:95CrossRefGoogle Scholar
  42. 42.
    Incorvia MJ, Contarini S (1989) J Electrochem Soc 136:2493CrossRefGoogle Scholar
  43. 43.
    Karman FH, Felhosi I, Kalman E, Cserny I, Kover L (1998) Electrochim Acta 43:69CrossRefGoogle Scholar
  44. 44.
    Braun RD, Lopez EE, Voller DP (1993) Corros Sci 34:1251CrossRefGoogle Scholar
  45. 45.
    Banejee G, Malhotra SN (1992) Corrosion 481:10CrossRefGoogle Scholar
  46. 46.
    Antropov LI (1962) The 1st International Congress of Metallic Corrosion. Butter worths, London, p 147 Google Scholar
  47. 47.
    Aramaki K, Uehre J, Nishihare H (1990) Proceedings of the 11th International Corrosion Congress, vol 3, Florence, Italy p 331Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Electrochemistry Research Laboratory, Chemistry Department, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations