Journal of Applied Electrochemistry

, Volume 38, Issue 11, pp 1519–1526 | Cite as

Electrochemical gold deposition from sulfite solution: application for subsequent polyaniline layer formation

  • Gintaras Baltrūnas
  • Aušra Valiūnienė
  • Justas Vienožinskis
  • Ernestas Gaidamauskas
  • Teofilis Jankauskas
  • Žana Margarian
Original Paper


Electrochemical gold deposition from sulfite solutions was studied by means of voltammetry, EIS and EQCM. A gold film electrode was used for polyaniline layer formation by electrochemical oxidation of aniline. The standard electrochemical reduction potential of the reaction [Au(SO3)2]3− + e = Au + 2 SO 3 2− was determined, and is equal to 0.116 V (vs. NHE). Both solution stirring and temperature increase accelerate the electrochemical reduction of gold, when the electrode potential is below −0.55 V. When the potential is above −0.55 V the electrochemical reduction proceeds via passive layer formation. Our study suggests that the passive layer consists of chemically adsorbed sulfite ions and sulfur. The gold film deposited from sulfite solution is a high quality substrate suitable for conducting polymer layer formation. This technique, where a polymer layer electrode is prepared by thin gold film deposition onto a metal surface and by subsequent polymer layer formation, can be applied in sensor research and technology.


Adsorption Electrochemical impedance spectroscopy Gold Passive layer Sulfite Sulfur Microbalance 



The authors thank the Lithuanian State Science and Studies Foundation (grant No. B-34/2008) for partial financial support.


  1. 1.
    Brahim S, Wilson AM, Narinesingh D et al (2003) Microchim Acta 143:123CrossRefGoogle Scholar
  2. 2.
    Sadik OA, Ngundi M, Wanekaya A (2003) Microchim Acta 143:187CrossRefGoogle Scholar
  3. 3.
    Tarasevich MR (1990) The electrochemistry of polymers. Nauka, MoscowGoogle Scholar
  4. 4.
    Kaiser H (2002) Edelmetallschichten. Leutze Verlag, Bad SaulgauGoogle Scholar
  5. 5.
    Smith PT (1962) US patent No. 3.059.789Google Scholar
  6. 6.
    Morrissey RJ (1993) Plat Surf Finish 80:75Google Scholar
  7. 7.
    Dauksher WJ, Resnick DJ, Yanof AW (1994) Microelectron Eng 23:235CrossRefGoogle Scholar
  8. 8.
    Ehrfeld W, Lehr H (1995) Radiat Phys Chem 45:349CrossRefGoogle Scholar
  9. 9.
    Okinaka J, Hoshino M (1998) Gold Bull 31:3Google Scholar
  10. 10.
    Green TA, Liew MJ, Roy S (2003) J Electrochem Soc 150:C104CrossRefGoogle Scholar
  11. 11.
    Pechewitskij BJ, Erenburg AM (1970) Izv Sib Otdel AN SSSR Ser Khim Nauk 4:24Google Scholar
  12. 12.
    Wilkinson P (1986) Gold Bull 19:75Google Scholar
  13. 13.
    Shirai N, Yoshimura S, Sato E (1989) J Surf Finish Soc Jpn 40:543Google Scholar
  14. 14.
    Honma H, Hagiwara K (1995) J Electrochem Soc 142:81CrossRefGoogle Scholar
  15. 15.
    Honma H, Kagaya Y (1993) J Electrochem Soc 140:L135CrossRefGoogle Scholar
  16. 16.
    Baltrūnas G, Valiūnienė A, Valiūnas R (2003) Pol J Chem 77:1819Google Scholar
  17. 17.
    Varga K, Baradlai P, Vertes A (1997) Electrochim Acta 42:1143CrossRefGoogle Scholar
  18. 18.
    Fanigliulo A, Bozzini B (2002) Trans Inst Met Finish 80:132Google Scholar
  19. 19.
    Osaka T, Kato N, Sato J et al (2001) J Electrochem Soc 48:C659CrossRefGoogle Scholar
  20. 20.
    Stoynov ZB, Grafov BM, Savova-Stoinov BS et al (1991) Electrochemical impedance. Nauka, MoscowGoogle Scholar
  21. 21.
    Kupper M, Baltrūnas G, Lowe H (1997) Galvanotechnik 88:2906Google Scholar
  22. 22.
    Baltrūnas G, Drunga V, Švedas D (1994) J Electroanal Chem 365:67Google Scholar
  23. 23.
    Vetter KJ (1967) Electrochemical kinetics. Academic Press, New YorkGoogle Scholar
  24. 24.
    Grafov BM, Ukshe EA (1973) The electrochemical AC circuits. Nauka, MoscowGoogle Scholar
  25. 25.
    Wells AF (1986) Structural inorganic chemistry. Clarendon Press, OxfordGoogle Scholar
  26. 26.
    Guiseppielie A, Pradhan SR, Wilson AM et al (1993) Chem Mater 5:1474CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gintaras Baltrūnas
    • 1
  • Aušra Valiūnienė
    • 1
  • Justas Vienožinskis
    • 1
  • Ernestas Gaidamauskas
    • 1
  • Teofilis Jankauskas
    • 1
  • Žana Margarian
    • 1
  1. 1.Faculty of ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations