Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 8, pp 1111–1119 | Cite as

Electrochemical promotion of deep oxidation of methane on Pd/YSZ

  • V. Roche
  • R. Karoum
  • A. Billard
  • R. Revel
  • P. Vernoux
Original Paper

Abstract

Electrochemical catalysts based on Pd deposited by Physical Vapour Deposition on YSZ were used for methane deep oxidation. Different thicknesses of Pd films varying from 11 to 75 nm were catalytically characterized between 150 and 750 °C. The Pd loadings were extremely low. Catalytic and EPOC experiments were carried out on those electrochemical catalysts. Their catalytic activities were compared with the performances of a reference catalyst. It was found that the catalytic activity can be in situ tuned by applying an anodic polarization thus supplying oxygen ions at the surface of the catalyst. Faradaic efficiency values up to 258 were observed and the induced modifications of the catalytic rate were typically 100 times higher than the corresponding ionic current. The influence of the polarization on the temperature of decomposition of the palladium oxide was also examined. The polarization was found to enhance the thermal stability of the oxide and turn palladium oxide into metallic palladium at higher temperatures.

Keywords

EPOC NEMCA Catalytic combustion Methane oxidation Electrochemical catalyst Sputtered electrodes PdO stability 

References

  1. 1.
    Ribeiro FH, Chow M, Dallabetta RA (1994) J Catal 146:537CrossRefGoogle Scholar
  2. 2.
    Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A 81:227CrossRefGoogle Scholar
  3. 3.
    Athanasiou C, Marnellos G, Tsiakaras P, Stoukides M (1996) Ionics 2:353CrossRefGoogle Scholar
  4. 4.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  5. 5.
    Janek J, Luerßen B, Mutoro E, Fischer H, Günther S (2007) Top Catal 44(3):399CrossRefGoogle Scholar
  6. 6.
    Leiva EPM (2007) Top Catal 44(3):347CrossRefGoogle Scholar
  7. 7.
    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B 73:73CrossRefGoogle Scholar
  8. 8.
    Nicole J, Comninellis Ch (2000) Solid State Ionics 136–137:687CrossRefGoogle Scholar
  9. 9.
    Tsiakaras P, Athanasiou C, Marnellos G, Stoukides M, Ten Elshof JE, Bouwmeester HJM (1998) Appl Catal A 169:249CrossRefGoogle Scholar
  10. 10.
    Gaillard F, Li X, Uray M, Vernoux P (2004) Catal Lett 96:177CrossRefGoogle Scholar
  11. 11.
    De Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2008) Catal Commun 9:17CrossRefGoogle Scholar
  12. 12.
    Tsiakaras P, Vayenas CG (1993) J Catal 140:53CrossRefGoogle Scholar
  13. 13.
    Frantzis AD, Bebelis S, Vayenas CG (2000) SSI 136–137:863Google Scholar
  14. 14.
    Yiokari K, Bebelis S (2000) J Appl Electrochem 30:1277CrossRefGoogle Scholar
  15. 15.
    Marwood M, Vayenas CG (1997) J Catal 170:275CrossRefGoogle Scholar
  16. 16.
    Luerssen B, Gonther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Chem Phys Lett 316:331CrossRefGoogle Scholar
  17. 17.
    Giannikos A, Frantzis AD, Pliangos C, Bebelis S, Vayenas CG (1998) Ionics 4:53CrossRefGoogle Scholar
  18. 18.
    Briois P, Billard A (2006) Surf Coat Technol 201(3–5):1328CrossRefGoogle Scholar
  19. 19.
    Briois P, Lapostolle F, Demange V, Djurado E, Billard A (2006) Surf Coat Technol 201(1–2):6012Google Scholar
  20. 20.
    Aubry E, Ghazzal MN, Demange V, Chaoui N, Robert D, Billard A (2007) Surf Coat Technol 201:7706CrossRefGoogle Scholar
  21. 21.
    Perry F, Billard A, Pigeat P (2008) Measurement 41:516CrossRefGoogle Scholar
  22. 22.
    Lapostolle F, Perry F, Billard A (2006) Surf Coat Technol 201(6):2633CrossRefGoogle Scholar
  23. 23.
    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412CrossRefGoogle Scholar
  24. 24.
    Billard A, Vernoux P (2007) Top Catal 44:369CrossRefGoogle Scholar
  25. 25.
    Epling WS, Hoflund GB (1999) J Catal 182:5CrossRefGoogle Scholar
  26. 26.
    Maillet T, Solleau C, Barbier J Jr, Duprez D (1997) Appl Catal B 14:85CrossRefGoogle Scholar
  27. 27.
    Li X, Gaillard F, Vernoux P (2007) Top Catal 44(3):391CrossRefGoogle Scholar
  28. 28.
    Koutsodontis C, Katsaounis A, Figueroa JC, Cavalca C, Pereira CJ, Vayenas CG (2007) Top Catal 38(1–3):157Google Scholar
  29. 29.
    Jaccoud A, Foti G, Wüthrich R, Jotterand H, Comninellis C (2007) Top Catal 44(3):409CrossRefGoogle Scholar
  30. 30.
    Furuya T, Sasaki K, Hanakata Y, Ohhashi T, Yamada M, Tsuchiya T, Furuse Y (1995) Catal Today 26:345CrossRefGoogle Scholar
  31. 31.
    Su SC, Carstens JN, Bell AT (1998) J Catal 176:125CrossRefGoogle Scholar
  32. 32.
    Jaccoud A, Falgairette C, Foti G, Comninellis C (2007) Electrochim Acta 52:7927CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V. Roche
    • 1
  • R. Karoum
    • 1
    • 2
  • A. Billard
    • 2
  • R. Revel
    • 3
  • P. Vernoux
    • 1
  1. 1.Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON)UMR 5256 CNRS Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Laboratoire d’Etude et Recherche sur les Matériaux, les Procédés et les SurfacesUniversité Technologique de Belfort MontbéliardBelfortFrance
  3. 3.Institut Français du Pétrole, IFP-LyonVernaisonFrance

Personalised recommendations