Journal of Applied Electrochemistry

, Volume 38, Issue 9, pp 1321–1328 | Cite as

Studies of some operating parameters and cyclic voltammetry for a direct ethanol fuel cell

  • H. Pramanik
  • A. A. Wragg
  • S. Basu
Original Paper


A direct ethanol fuel cell (DEFC) of 5 cm2 membrane-electrode area was studied systematically by varying the catalyst loading, ethanol concentration, temperature and different Pt based electro-catalysts (Pt–Ru/C, Pt-black High Surface Area (HSA) and Pt/C). A combination of 2 M ethanol at the anode, pure oxygen at the cathode, 1 mg cm−2 of Pt–Ru/C (40%:20%) as the anode and 1 mg cm−2 of Pt-black as the cathode gave a maximum open circuit voltage (OCV) of 0.815 V, a short circuit current density of 27.90 mA cm−2 and a power density of 10.3 mW cm−2. The optimum temperatures of the anode and cathode were determined as 90 °C and 60 °C, respectively. The power density increased with increase in ethanol concentration and catalyst loading at the anode and cathode. However, the power density decreased slightly beyond 2 M ethanol concentration and 1 mg cm−2 catalyst loading at the anode and cathode. These results were validated using cyclic voltammetry at single electrodes under similar conditions to those of the DEFC.


Direct ethanol fuel cell (DEFC) Ethanol Pt electrode catalyst Cyclic voltammetry 



The authors acknowledge financial support by the Ministry of New and Renewable Energy, Government of India (102/01/2002-NT).


  1. 1.
    Basu S (ed) (2007) Recent trends in fuel cell science and technology. Springer, AnamayaGoogle Scholar
  2. 2.
    Glazebrook RW (1982) J Power Sources 7:215CrossRefGoogle Scholar
  3. 3.
    Lamy C, Belgsir EM, Leger J-M (2001) J Appl Electrochem 31:799CrossRefGoogle Scholar
  4. 4.
    Lamy C, Lima A, LeRhun V et al (2002) J Power Sources 105:283CrossRefGoogle Scholar
  5. 5.
    Lamy C, Rousseau S, Belgsir EM et al (2004) Electrochim Acta 49:3901CrossRefGoogle Scholar
  6. 6.
    Colamati F, Antolini E, Gonzalez ER (2006) J Power Sources 157:98CrossRefGoogle Scholar
  7. 7.
    Hitmi H, Belgsir EM, Leger J-M et al (1994) Electrochim Acta 39:407CrossRefGoogle Scholar
  8. 8.
    Pramanik H, Basu S (2007) Can J Chem Eng 85:781CrossRefGoogle Scholar
  9. 9.
    Arico AS, Creti P, Kim H et al (1996) J Electrochem Soc 143:3950CrossRefGoogle Scholar
  10. 10.
    Guo JW, Zhao T, Prabhuram J et al (2005) Electrochim Acta 50:1973CrossRefGoogle Scholar
  11. 11.
    Santos LGRA, Oliveira CHF, Moraes IR et al (2006) J Electroan Chem 596:141CrossRefGoogle Scholar
  12. 12.
    Wei D, Chan SH, Li LL et al (2005) Electrochim Acta 50:2279CrossRefGoogle Scholar
  13. 13.
    Sotaiti P, Arico AS, Baglio V et al (2001) Solid State Ionics 145:101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.School of Engineering, Computing and MathematicsExeter UniversityExeterUK

Personalised recommendations