Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 8, pp 1121–1126 | Cite as

Comparative studies between classic and wireless electrochemical promotion of a Pt catalyst for ethylene oxidation

  • Danai Poulidi
  • Ian S. Metcalfe
Original Paper

Abstract

A comparative study between a classic and a wireless electrochemical promotion experiment was undertaken as a tool towards the better understanding of both systems. The catalytic modification of a platinum catalyst for ethylene oxidation was studied. The catalyst was supported on yttria-stabilised-zirconia (YSZ), a known pure oxide ion conductor, for the classic experiment and La0.6Sr0.4Co0.2Fe0.8O3–δ—a mixed oxide ion electronic conductor—was used for the wireless experiment. The two systems showed certain similarities in terms of the reaction classification (in both cases electrophobic behaviour was observed) and the promotion mechanism. Significant difference was observed in the time scales and the reversibility of the induced rate modification.

Keywords

Electrochemical promotion Mixed conductor Catalysis remote control 

Notes

Acknowledgments

The authors thank Mr Craig Anderson for obtaining the classic EPOC experimental results. Funding from the Engineering and Physical Sciences Research Council via grant number EP/E033687/1 is acknowledged. ISM thanks the Centre for Process Innovation, Wilton, UK, for financial support.

References

  1. 1.
    Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Solid State Ion 177:2201CrossRefGoogle Scholar
  2. 2.
    Baranova E, Fóti G, Jotterand H, Comninellis C (2007) Top Catal 44:355CrossRefGoogle Scholar
  3. 3.
    Frantzis AD, Bebelis S, Vayenas CG (2000) Solid State Ion 136–137:863CrossRefGoogle Scholar
  4. 4.
    Karagiannakis G, Kokkofitis C, Zisekas S, Stoukides M (2005) Catal Today 104:219CrossRefGoogle Scholar
  5. 5.
    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412CrossRefGoogle Scholar
  6. 6.
    Vernoux P, Gaillard F, Lopez C, Siebert E (2004) Solid State Ion 175:609CrossRefGoogle Scholar
  7. 7.
    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) J Catal 222:192CrossRefGoogle Scholar
  8. 8.
    Tsiplakides D, Neophytides S, Vayenas CG (2000) Solid State Ion 136–137:839CrossRefGoogle Scholar
  9. 9.
    Metcalfe IS (2001) J Catal 199:247CrossRefGoogle Scholar
  10. 10.
    Metcalfe IS (2001) J Catal 199:259CrossRefGoogle Scholar
  11. 11.
    Vayenas CG, Brosda S, Pliangos C (2001) J Catal 203:329CrossRefGoogle Scholar
  12. 12.
    Poulidi D, Thursfield A, Metcalfe IS (2007) Top Catal 44:435CrossRefGoogle Scholar
  13. 13.
    Poulidi D, Mather GC, Metcalfe IS (2007) Solid State Ion 178:675CrossRefGoogle Scholar
  14. 14.
    Poulidi D, Anderson C, Metcalfe IS (Submitted for publication) Solid State IonGoogle Scholar
  15. 15.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722CrossRefGoogle Scholar
  16. 16.
    Koutsodontis C, Katsaounis A, Figueroa J, Cavalca C, Pereira C, Vayenas C (2006) Top Catal 38:157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced MaterialsMerz Court, Newcastle UniversityNewcastle-upon-TyneUK

Personalised recommendations