Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 6, pp 845–851 | Cite as

Iodide mediated electrolysis of acidic coke/coal suspension

  • A. Demoz
  • C. Khulbe
  • C. Fairbridge
  • S. Petrovic
Original Paper

Abstract

Hydrogen is among the emerging energy vectors that are being developed to replace nonrenewable hydrocarbon energy sources. The preferred method to produce hydrogen without generating greenhouse gases is the electrolysis of water using renewable energy. The reduction of energy during the water electrolysis process is a desirable goal regardless of the source of electric power. Similar to ferrous/ferric mediation, iodide can be used as a mediator in the electrolysis of an acidic suspension of coke or coal. The iodide ion is oxidized at a far lower anodic potential than the alternative oxygen evolution reaction. This reduces the cell electrolysis voltage and, consequently, reduces electricity use. The iodide consumed at the anode is continuously regenerated by chemical reaction with the coke/coal in suspension.

Keywords

Catalytic chemical regeneration Electrochemical gasification Iodide mediator Iodide/triiodide redox couple Diffusion limiting current Water electrolysis 

Notes

Acknowledgements

Partial funding for NCUT was provided by the Canadian Program for Energy Research and Development (PERD), the Alberta Research Council and the Alberta Energy Research Institute.

References

  1. 1.
    Energy Information Administration, International Energy Annual (2004) Available via http://www.eia.doe.gov/emeu/iea/overview.html. Cited November 2006
  2. 2.
    Oil Sands Technology Roadmap, Alberta Chamber of Resources (2004) Suite 1940, 10180–101st Street, Edmonton, Alberta, Canada, T5J 3S4Google Scholar
  3. 3.
    Aldridge CL, Buben D, Goldberg RS (1973) Hydrogen production by catalytic steam gasification of carbonaceous materials. US Patent no. 3,749,193Google Scholar
  4. 4.
    Coughlin RW, Farooque M (1979) Nature 279:301CrossRefGoogle Scholar
  5. 5.
    Farooque M, Coughlin RW (1979) Fuel 58:705CrossRefGoogle Scholar
  6. 6.
    Farooque M, Coughlin RW (1979) Nature 280:666CrossRefGoogle Scholar
  7. 7.
    Farooque M, Coughlin RW (1980) Ind Eng Chem Process Des Dev 19:211CrossRefGoogle Scholar
  8. 8.
    Lynch CS, Collett AR (1932) Fuel 11:408Google Scholar
  9. 9.
    Eddinger RT, Demorest DJ (1947) Fuel 26:157Google Scholar
  10. 10.
    Belcher RJ (1948) Soc Chem Ind 67:213CrossRefGoogle Scholar
  11. 11.
    Belcher RJ (1948) Soc Chem Ind 67:217CrossRefGoogle Scholar
  12. 12.
    Belcher RJ (1948) Soc Chem Ind 67:218CrossRefGoogle Scholar
  13. 13.
    Belcher RJ (1948) Soc Chem Ind 67:265CrossRefGoogle Scholar
  14. 14.
    Thomas G, Chettiar M, Briss VI (1990) J Electrochem Soc 137:3104CrossRefGoogle Scholar
  15. 15.
    Thomas G, Chettiar M, Briss VI (1990) J Electrochem Soc 20:941Google Scholar
  16. 16.
    Khundkar MH, Kamal MM (1966) Fuel 45:9–15Google Scholar
  17. 17.
    Markby R, Sternberg H, Wender I (1963) Nature 199:997CrossRefGoogle Scholar
  18. 18.
    Guruswamy OG, Brockris JOM (1981) J Electrochem Soc 128:2097CrossRefGoogle Scholar
  19. 19.
    Spitzer R (1978) Electrolytic production of hydrogen. US Patent no. 4,081,337Google Scholar
  20. 20.
    Dhooge PM, Stilwell DE, Park S-M (1982) J Electrochem Soc 129:1719CrossRefGoogle Scholar
  21. 21.
    Dhooge PM, Park S-M (1983) J Electrochem Soc 130:1029CrossRefGoogle Scholar
  22. 22.
    Dhooge PM, Park S-M (1983) J Electrochem Soc 130:1539CrossRefGoogle Scholar
  23. 23.
    Dhooge PM, Park S-M (1985) J Electrochem Soc 132:1158CrossRefGoogle Scholar
  24. 24.
    Kreysa G, Kochanek W (1985) J Electrochem Soc 132:2084CrossRefGoogle Scholar
  25. 25.
    Lalvani SB, Coughlin RW (1983) Anodic oxidation of coal slurries in basic electrolytes, Proc Workshop on Electrochemistry of Carbon. J Electrochem Soc 85(5):492Google Scholar
  26. 26.
    Lalvani SB, Pata M, Coughlin RW (1983) Fuel 62:427CrossRefGoogle Scholar
  27. 27.
    Lalvani SB, Nand S, Coughlin RW (1985) Fuel Process Technol 11:25CrossRefGoogle Scholar
  28. 28.
    Lalvani SB, Coughlin RW (1985) Fuel Process Technol 11:37CrossRefGoogle Scholar
  29. 29.
    Lalvani SB (1985) Desulfurization of coal slurries by electrolysis. Final Report July 1, 1984–June 30, 1985, US Department of Energy Contract Number DE-FC01-83FE60339Google Scholar
  30. 30.
    Lalvani SB, Pata M, Coughlin RW (1986) Fuel 65:122CrossRefGoogle Scholar
  31. 31.
    Senftle FE, Patton KM (1981) Fuel 60:1131CrossRefGoogle Scholar
  32. 32.
    Wapner PG, Lalvani SB, Awad G (1988) Fuel Process Technol 18:25CrossRefGoogle Scholar
  33. 33.
    Nusbaumer H, Zakeerudin SM, Moser J, Gratzel M (2003) Chem Eur J 9:3756CrossRefGoogle Scholar
  34. 34.
    Paddon A, Bhatti FL, Donohoe TJ, Compton RG (2006) Ultrason Sonochem 14:502CrossRefGoogle Scholar
  35. 35.
    Foresti M, Innocenti M, Forni F, Guidelli R (1998) Langmuir 14:7008CrossRefGoogle Scholar
  36. 36.
    Magnussen OM (2002) Chem Rev 102:679CrossRefGoogle Scholar
  37. 37.
    Ross PN Jr (1979) J Electrochem Soc 126:67CrossRefGoogle Scholar
  38. 38.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, LondonGoogle Scholar
  39. 39.
    Baldwin RP, Jones KF, Joseph JT (1981) Fuel 60:739CrossRefGoogle Scholar
  40. 40.
    Skoog DA, West DM, Holler JF (1994) Analytical chemistry, an introduction, 6th edn. Saunders College Publishing, Philadelphia PAGoogle Scholar
  41. 41.
    Coetzee JF, Gardner CW Jr (1982) Anal Chem 54:2532CrossRefGoogle Scholar
  42. 42.
    Desideri PG, Lepri L, Helmler D (1973) In: Encyclopedia of electrochemistry of the elements, vol I, Chapters 1–3. Mercel Dekker, New YorkGoogle Scholar
  43. 43.
    Myung N, Licht S (1995) J Electrochem Soc 142:L129CrossRefGoogle Scholar
  44. 44.
    Dane LM, Jansen LJ, Hoogland JG (1968) Electrochim Acta 13:507CrossRefGoogle Scholar
  45. 45.
    Papageoriou N, Maier WF, Gratzel M (1997) J Electrochem Soc 144:876CrossRefGoogle Scholar
  46. 46.
    Saveant JM, Vianello E (1965) Electrochim Acta 10:905CrossRefGoogle Scholar
  47. 47.
    Fitzmaurice DJ, Frei H (1991) Langmuir 7:1129CrossRefGoogle Scholar
  48. 48.
    Vlachopoulos N, Liska P, Augustynski J, Gratzel M (1988) J Am Chem Soc 110:1216CrossRefGoogle Scholar
  49. 49.
    Moser J, Gratzel M (1982) Helv Chim Acta 65:1436CrossRefGoogle Scholar
  50. 50.
    Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU (2000) J Phys Chem B 104:949CrossRefGoogle Scholar

Copyright information

© Her Majestey the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2008 2008

Authors and Affiliations

  • A. Demoz
    • 1
  • C. Khulbe
    • 1
  • C. Fairbridge
    • 1
  • S. Petrovic
    • 2
  1. 1.CANMET, CETC-DevonDevonCanada
  2. 2.Arizona State University, Polytechnic CampusMesaUSA

Personalised recommendations