Journal of Applied Electrochemistry

, Volume 38, Issue 5, pp 689–694 | Cite as

Effects of saccharin on the electrodeposition of Ni–Co nanocrystalline coatings

  • Sh. Hassani
  • K. Raeissi
  • M. A. Golozar
Original Paper


Nickel–Co nanocrystalline coatings were electrodeposited onto a carbon steel substrate with and without saccharin addition. In the absence of saccharin, current density and adsorption of hydrogen complexes and/or intermediate components were distinguished as two effective parameters causing nanocrystalline electrodeposits. In the latter case, the growth active sites can be blocked easily at low current densities. By increasing the current density, a lower degree of adsorption was associated by a significant increase in surface diffusion of adions resulting in grain growth. Although, the nucleation rate is expected to increase with current density, it seems that the Ni–Co grain size is not reduced by the nucleation rate. Adsorption of saccharin molecules and/or decomposed sulfide species occurred in the saccharin contained bath, resulting in slow surface diffusion of adions. Therefore, finer grains were obtained which produced a smooth morphology instead of the pyramidal forms obtained in the absence of saccharin.


Ni–Co Nanocrystalline coating EIS Electrodeposition Adsorption 


  1. 1.
    Gomez E, Pane S, Valles E (2005) Electrochim Acta 51:146CrossRefGoogle Scholar
  2. 2.
    Chi B, Li J, Yang X, Gong Y et al (2005) Int J Hydrogen Energy 30:29CrossRefGoogle Scholar
  3. 3.
    Wang L, Gao Y, Xue Q, Liu H et al (2005) Appl Surf Sci 242:326CrossRefGoogle Scholar
  4. 4.
    Orinakova R, Turonova A, Kladekova D et al (2006) J Appl Electrochem 36:957CrossRefGoogle Scholar
  5. 5.
    Golodnitsky D, Rosenberg Yu, Ulus A (2002) Electrochim Acta 47:2707CrossRefGoogle Scholar
  6. 6.
    Gomez E, Ramirez J, Valles E (1998) J Appl Electrochem 28:71CrossRefGoogle Scholar
  7. 7.
    Correia AN, Machado SAS (2000) Electrochim Acta 45:1733CrossRefGoogle Scholar
  8. 8.
    Hibbard GD, Aust KT, Erb U (2006) Mater Sci Eng A Struct Mater 433:195CrossRefGoogle Scholar
  9. 9.
    Natter H, Hempelmann R (1996) J Phys Chem 100:19525CrossRefGoogle Scholar
  10. 10.
    Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186CrossRefGoogle Scholar
  11. 11.
    Cziraki A, Fogarassy B, Gerocs I et al (1994) J Mater Sci 29:4771CrossRefGoogle Scholar
  12. 12.
    Ebrahimi F, Ahmed Z (2003) J Appl Electrochem 33:733CrossRefGoogle Scholar
  13. 13.
    Haug K, Jenkins T (2000) J Phys Chem B 104:10017CrossRefGoogle Scholar
  14. 14.
    Wang L, Gao Y, Xu T et al (2006) Mater Chem Phys 99:96CrossRefGoogle Scholar
  15. 15.
    Wang L, Zhang J, Gao Y, Xue Q, Hu l, Xu T (2006) Scr Mater 55:657CrossRefGoogle Scholar
  16. 16.
    Wu BYC (2002) Synthesis and characterization of nanocrystalline alloys in the binary Ni–Co system. B.Sc. thesis, University of TorontoGoogle Scholar
  17. 17.
    Wang GF, Chan KC, Zhang KF (2006) Scr Mater 54:765CrossRefGoogle Scholar
  18. 18.
    Cullity BD, Stock SR, Stock S (2001) Elements of x-ray diffraction. Addision-Wesley, LondonGoogle Scholar
  19. 19.
    Gabrielli C (1998) Identification of electrochemical processes by frequency response analysis. Technical Report No. 004/83, University of Pierre et Marie Curie, ParisGoogle Scholar
  20. 20.
    Schlesinger M, Paunovic M (2000) Modern electroplating. John Wiley & Sons, London, p 46Google Scholar
  21. 21.
    El-Sherik AM (1995) J Mater Sci 30:5743CrossRefGoogle Scholar
  22. 22.
    Budevski E, Staikov G, Lorenz WJ (2000) Electrochim Acta 45:2559CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations