Skip to main content

Advertisement

Log in

A 27-3 fractional factorial optimization of polybenzimidazole based membrane electrode assemblies for H2/O2 fuel cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We describe the usefulness of a statistical fractional factorial design to obtain consistent and reproducible behavior of a membrane-electrode-assembly (MEA) based on a phosphoric acid (PA) doped polybenzimidazole (PBI) membrane, which allows a H2/O2 fuel cell to operate above 150 °C. Different parameters involved during the MEA fabrication including the catalyst loading, amount of binder, processing conditions like temperature and compaction load and also the amount of carbon in the gas diffusion layers (GDL) have been systematically varied according to a 27-3 fractional factorial design and the data thus obtained have been analyzed using Yates’s algorithm. The mean effects estimated in this way suggest the crucial role played by carbon loading in the gas diffusion layer, hot compaction temperature and the binder to catalyst ratio in the catalyst layer for enabling continuous performance. These statistically designed electrodes provide a maximum current density and power density of 1,800 mA cm−2 and 280 mW cm−2, respectively, at 160 °C using hydrogen and oxygen under ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Steel BCH, Heinze A (2001) Nature 414:345

    Article  Google Scholar 

  2. Dresselhaus MS, Thomas IL (2001) Nature 414:332

    Article  CAS  Google Scholar 

  3. Wilikinson DP, Voss HH Prater K, (1994) J Power Sources 49:117

    Article  Google Scholar 

  4. Mosdale R, Srinivasan S (1995) Electrochim Acta 40:413

    Article  CAS  Google Scholar 

  5. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S (1995) Electrochim Acta 40:297

    Article  CAS  Google Scholar 

  6. van Nguyen T, Knobbe MW (2003) J Power Sources 114:70

    Article  CAS  Google Scholar 

  7. van Bussel HPLH, Koene FGH, Mallant RKAM (1998) J Power Sources 71:218

    Article  Google Scholar 

  8. Ren X, Henderson W, Gottesfeld S (1997) J Electrochem Soc 144:L267

    Article  CAS  Google Scholar 

  9. Gottesfeld S, Pafford J (1988) J Electrochem Soc 135:2651

    Article  CAS  Google Scholar 

  10. Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S (2001) J Electrochem Soc 148:A11

    Article  CAS  Google Scholar 

  11. Li Q, He R, Gao JA, Jensen JO, Bjerrum NJ (2003) J Electrochem Soc 150:A1599

    Article  CAS  Google Scholar 

  12. Chu HS, Wang CP, Liao WC, Yan WM (2006) J Power Sources 159:1071

    Article  CAS  Google Scholar 

  13. Wang C-P, Chu H-S (2006) J Power Sources 1059:1025

    Article  CAS  Google Scholar 

  14. Bhatia KK, Wang C-Y (2004) Electrochim Acta 49:2333

    Article  CAS  Google Scholar 

  15. Krishnan P, Park J-S, Kim C-S (2006) J Power Sources 159:817

    Article  CAS  Google Scholar 

  16. Xu H, Song Y, Kunz HR, Fenton JM (2006) J Power Sources 159:979

    Article  CAS  Google Scholar 

  17. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) J Power Sources 165:739

    Article  CAS  Google Scholar 

  18. Uchida H, Izumi K, Watanabe M (2006) J Phys Chem B 110:21924

    Article  CAS  Google Scholar 

  19. Holladay JD, Wainright JS, Jones EO, Gano SR (2004) J Power Sources 130:111

    Article  CAS  Google Scholar 

  20. Li Q, He R, Jensen JO, Bjerrum NJ (2003) Chem Mater 15:4896

    Article  CAS  Google Scholar 

  21. Gieselman MB, Reynolds JR (1993) Macromolecules 26:5633

    Article  CAS  Google Scholar 

  22. Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:L121

    Article  CAS  Google Scholar 

  23. Staiti P, Lufrano F, Aricò AS, Passalacqua E, Antonucci V (2001) J Memb Sci 188:71

    Article  CAS  Google Scholar 

  24. Fontanella JJ, Wintersgill MC, Wainright JS, Savinell RF, Litt M (1998) Electrochim Acta 43:1289

    Article  CAS  Google Scholar 

  25. Kawahara M, Morita J, Rikukawa M, Sanui K, Ogata N (2000) Electrochim Acta 45:1395

    Article  CAS  Google Scholar 

  26. Kerres JA (2001) J Memb Sci 185:3

    Article  CAS  Google Scholar 

  27. Jalani NH, Ramani M, Ohlsson K, Buelte S, Pacifico G, Pollard R, Staudt R, Datta R (2006) J Power Sources 160:1096

    Article  CAS  Google Scholar 

  28. Carollo A, Quartarone E, Tomasi C, Mustarelli P, Belotti F, Magistris A, Maestroni F, Parachini M, Garlaschelli L, Roghetti PP (2006) J Power Sources 160:175

    Article  CAS  Google Scholar 

  29. Li Q, He R, Jensen JO, Bjerrum NJ (2004) Fuel Cells 4:147

    Article  CAS  Google Scholar 

  30. He R, Li Q, Bach A, Jensen JO, Bjerrum NJ (2006) J Memb Sci 277:38

    Article  CAS  Google Scholar 

  31. Wang J-T, Savinell RF, Wainright J, Litt M, Yu H (1996) Electrochim Acta 41:193

    Article  CAS  Google Scholar 

  32. Kongstein OE, Berning T, Børresen B, Seland F, Tunold R (2007) Energy 32:418

    Article  CAS  Google Scholar 

  33. Li Q, He R, Berg RW, Hjuler HA, Bjerrum NJ (2004) Solid State Ionics 168:177

    Article  CAS  Google Scholar 

  34. Xiao G, Li Q, Hjuler HA, Berg RW, Bjerrum NJ (1995) J Electrochem Soc 142:2890

    Article  CAS  Google Scholar 

  35. Xing B, Savadogo O (2000) J New Mater Electrochem Syst 3:345

    Google Scholar 

  36. Pu H, Meyer WH, Wegner G (2002) J Polym Sci Part B Polym Phys 40:663

    Article  CAS  Google Scholar 

  37. Bouchet R, Siebert E (1999) Solid State Ionics 118:287

    Article  CAS  Google Scholar 

  38. Ma Y-L, Wainright JS, Litt MH, Savinell RF (2004) J Electrochem Soc 151:A8

    Article  CAS  Google Scholar 

  39. Li Q, Hjuler HA, Bjerrum NJ (2001) J Appl Electrochem 31:773

    Article  CAS  Google Scholar 

  40. Lobato J, Canizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) J Memb Sci 280:351

    Article  CAS  Google Scholar 

  41. Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) J Electrochem Soc 150:A1599

    Article  CAS  Google Scholar 

  42. Weng D, Wainright JS, Landau U, Savinell RF (1996) J Electrochem Soc 143:1260

    Article  CAS  Google Scholar 

  43. Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe E-W, Ramanathan LS, Yu S, Benicewicz BC (2005) Fuel Cells 5:287

    Article  CAS  Google Scholar 

  44. Saegusa Y, Horikiri M, Nakamura S (1997) Macromol Chem Phys 198:619

    Article  CAS  Google Scholar 

  45. Chuang S-W, Hsu SL-C (2006) J Polym Sci Part A Polym Chem 44:4508

    Article  CAS  Google Scholar 

  46. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Science 315:220

    Article  CAS  Google Scholar 

  47. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493

    Article  CAS  Google Scholar 

  48. Bashyam R, Zelanay P (2006) Nature 443:63

    Article  CAS  Google Scholar 

  49. Staiti P, Minutoli M (2001) J Power Sources 94:9

    Article  CAS  Google Scholar 

  50. Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2007) Electrochim Acta 52:3910

    Article  CAS  Google Scholar 

  51. He R, Li Q, Xiao G, Bjerrum NJ (2003) J Memb Sci 226:169

    Article  CAS  Google Scholar 

  52. Hasiotis C, Deimede V, Kontoyannis C (2001) Electrochim Acta 46:2401

    Article  CAS  Google Scholar 

  53. Li Q, Pan C, Jensen JO, Noyé P, Bjerrum NJ (2007) Chem Mater 19:350

    Article  CAS  Google Scholar 

  54. Metha V, Cooper JS (2003) J Power Sources 114:32

    Article  CAS  Google Scholar 

  55. Litster S, Mclean G (2004) J Power Sources 130:61

    Article  CAS  Google Scholar 

  56. Lobato J, Rodrigo MA, Linares JJ, Scott K (2006) J Power Sources 157:284

    Article  CAS  Google Scholar 

  57. Seland F, Berning T, Børresen B, Tunold R (2006) J Power Sources 160:27

    Article  CAS  Google Scholar 

  58. Williams J, Krinke A (2005) Fuel cell project. Spring 2005 at http://faculty.washington.edu/cooperjs/Education/Fuel%20cell%20class/Fuel%20cell%20reports/SP05%20Design%20of%20Experiments.pdf

  59. Duckworth WE (1968) Statistical techniques in technological research. Methuen, London

    Google Scholar 

  60. Montgomery DC (1976) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  61. Grujicic M, Chittajallu KM (2004) Appl Surf Sci 227:56

    Article  CAS  Google Scholar 

  62. Chaudhary VA, Mulla IS, Sainkar SR, Mandale AB, Vijayamohanan K (2000) Sens Actuators 79:224

    Article  Google Scholar 

  63. Kannan AM, Shukla AK, Hamnett A (1988) J Appl Electrochem 18:149

    Article  CAS  Google Scholar 

  64. Iwakura Y, Uno K, Imai Y (1964) J Polym Sci Part A 2:2605

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Council of Science and Industrial Research, New Delhi, India, for funding through a NMITLI programme to carry out this work. RK thanks University Grants Commission for financial support. We also thank Dr. S. Sivaram, Director, National Chemical Laboratory, Pune and Prof. A.K. Shukla, Director, Central Electrochemical Research Institute, Karaikudi, for several valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijayamohanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, R., Islam, M.N., Rathod, D. et al. A 27-3 fractional factorial optimization of polybenzimidazole based membrane electrode assemblies for H2/O2 fuel cells. J Appl Electrochem 38, 583–590 (2008). https://doi.org/10.1007/s10800-007-9475-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9475-1

Keywords

Navigation