Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 5, pp 583–590 | Cite as

A 27-3 fractional factorial optimization of polybenzimidazole based membrane electrode assemblies for H2/O2 fuel cells

  • R. Kannan
  • Md. N. Islam
  • D. Rathod
  • M. Vijay
  • U. K. Kharul
  • P. C. Ghosh
  • K. Vijayamohanan
Original Paper

Abstract

We describe the usefulness of a statistical fractional factorial design to obtain consistent and reproducible behavior of a membrane-electrode-assembly (MEA) based on a phosphoric acid (PA) doped polybenzimidazole (PBI) membrane, which allows a H2/O2 fuel cell to operate above 150 °C. Different parameters involved during the MEA fabrication including the catalyst loading, amount of binder, processing conditions like temperature and compaction load and also the amount of carbon in the gas diffusion layers (GDL) have been systematically varied according to a 27-3 fractional factorial design and the data thus obtained have been analyzed using Yates’s algorithm. The mean effects estimated in this way suggest the crucial role played by carbon loading in the gas diffusion layer, hot compaction temperature and the binder to catalyst ratio in the catalyst layer for enabling continuous performance. These statistically designed electrodes provide a maximum current density and power density of 1,800 mA cm−2 and 280 mW cm−2, respectively, at 160 °C using hydrogen and oxygen under ambient pressure.

Keywords

PEMFC Fractional factorial optimization MEA PBI Carbon loading 

Notes

Acknowledgments

The authors are grateful to the Council of Science and Industrial Research, New Delhi, India, for funding through a NMITLI programme to carry out this work. RK thanks University Grants Commission for financial support. We also thank Dr. S. Sivaram, Director, National Chemical Laboratory, Pune and Prof. A.K. Shukla, Director, Central Electrochemical Research Institute, Karaikudi, for several valuable discussions.

Reference

  1. 1.
    Steel BCH, Heinze A (2001) Nature 414:345CrossRefGoogle Scholar
  2. 2.
    Dresselhaus MS, Thomas IL (2001) Nature 414:332CrossRefGoogle Scholar
  3. 3.
    Wilikinson DP, Voss HH Prater K, (1994) J Power Sources 49:117CrossRefGoogle Scholar
  4. 4.
    Mosdale R, Srinivasan S (1995) Electrochim Acta 40:413CrossRefGoogle Scholar
  5. 5.
    Zawodzinski TA, Davey J, Valerio J, Gottesfeld S (1995) Electrochim Acta 40:297CrossRefGoogle Scholar
  6. 6.
    van Nguyen T, Knobbe MW (2003) J Power Sources 114:70CrossRefGoogle Scholar
  7. 7.
    van Bussel HPLH, Koene FGH, Mallant RKAM (1998) J Power Sources 71:218CrossRefGoogle Scholar
  8. 8.
    Ren X, Henderson W, Gottesfeld S (1997) J Electrochem Soc 144:L267CrossRefGoogle Scholar
  9. 9.
    Gottesfeld S, Pafford J (1988) J Electrochem Soc 135:2651CrossRefGoogle Scholar
  10. 10.
    Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S (2001) J Electrochem Soc 148:A11CrossRefGoogle Scholar
  11. 11.
    Li Q, He R, Gao JA, Jensen JO, Bjerrum NJ (2003) J Electrochem Soc 150:A1599CrossRefGoogle Scholar
  12. 12.
    Chu HS, Wang CP, Liao WC, Yan WM (2006) J Power Sources 159:1071CrossRefGoogle Scholar
  13. 13.
    Wang C-P, Chu H-S (2006) J Power Sources 1059:1025CrossRefGoogle Scholar
  14. 14.
    Bhatia KK, Wang C-Y (2004) Electrochim Acta 49:2333CrossRefGoogle Scholar
  15. 15.
    Krishnan P, Park J-S, Kim C-S (2006) J Power Sources 159:817CrossRefGoogle Scholar
  16. 16.
    Xu H, Song Y, Kunz HR, Fenton JM (2006) J Power Sources 159:979CrossRefGoogle Scholar
  17. 17.
    Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) J Power Sources 165:739CrossRefGoogle Scholar
  18. 18.
    Uchida H, Izumi K, Watanabe M (2006) J Phys Chem B 110:21924CrossRefGoogle Scholar
  19. 19.
    Holladay JD, Wainright JS, Jones EO, Gano SR (2004) J Power Sources 130:111CrossRefGoogle Scholar
  20. 20.
    Li Q, He R, Jensen JO, Bjerrum NJ (2003) Chem Mater 15:4896CrossRefGoogle Scholar
  21. 21.
    Gieselman MB, Reynolds JR (1993) Macromolecules 26:5633CrossRefGoogle Scholar
  22. 22.
    Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:L121CrossRefGoogle Scholar
  23. 23.
    Staiti P, Lufrano F, Aricò AS, Passalacqua E, Antonucci V (2001) J Memb Sci 188:71CrossRefGoogle Scholar
  24. 24.
    Fontanella JJ, Wintersgill MC, Wainright JS, Savinell RF, Litt M (1998) Electrochim Acta 43:1289CrossRefGoogle Scholar
  25. 25.
    Kawahara M, Morita J, Rikukawa M, Sanui K, Ogata N (2000) Electrochim Acta 45:1395CrossRefGoogle Scholar
  26. 26.
    Kerres JA (2001) J Memb Sci 185:3CrossRefGoogle Scholar
  27. 27.
    Jalani NH, Ramani M, Ohlsson K, Buelte S, Pacifico G, Pollard R, Staudt R, Datta R (2006) J Power Sources 160:1096CrossRefGoogle Scholar
  28. 28.
    Carollo A, Quartarone E, Tomasi C, Mustarelli P, Belotti F, Magistris A, Maestroni F, Parachini M, Garlaschelli L, Roghetti PP (2006) J Power Sources 160:175CrossRefGoogle Scholar
  29. 29.
    Li Q, He R, Jensen JO, Bjerrum NJ (2004) Fuel Cells 4:147CrossRefGoogle Scholar
  30. 30.
    He R, Li Q, Bach A, Jensen JO, Bjerrum NJ (2006) J Memb Sci 277:38CrossRefGoogle Scholar
  31. 31.
    Wang J-T, Savinell RF, Wainright J, Litt M, Yu H (1996) Electrochim Acta 41:193CrossRefGoogle Scholar
  32. 32.
    Kongstein OE, Berning T, Børresen B, Seland F, Tunold R (2007) Energy 32:418CrossRefGoogle Scholar
  33. 33.
    Li Q, He R, Berg RW, Hjuler HA, Bjerrum NJ (2004) Solid State Ionics 168:177CrossRefGoogle Scholar
  34. 34.
    Xiao G, Li Q, Hjuler HA, Berg RW, Bjerrum NJ (1995) J Electrochem Soc 142:2890CrossRefGoogle Scholar
  35. 35.
    Xing B, Savadogo O (2000) J New Mater Electrochem Syst 3:345Google Scholar
  36. 36.
    Pu H, Meyer WH, Wegner G (2002) J Polym Sci Part B Polym Phys 40:663CrossRefGoogle Scholar
  37. 37.
    Bouchet R, Siebert E (1999) Solid State Ionics 118:287CrossRefGoogle Scholar
  38. 38.
    Ma Y-L, Wainright JS, Litt MH, Savinell RF (2004) J Electrochem Soc 151:A8CrossRefGoogle Scholar
  39. 39.
    Li Q, Hjuler HA, Bjerrum NJ (2001) J Appl Electrochem 31:773CrossRefGoogle Scholar
  40. 40.
    Lobato J, Canizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) J Memb Sci 280:351CrossRefGoogle Scholar
  41. 41.
    Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) J Electrochem Soc 150:A1599CrossRefGoogle Scholar
  42. 42.
    Weng D, Wainright JS, Landau U, Savinell RF (1996) J Electrochem Soc 143:1260CrossRefGoogle Scholar
  43. 43.
    Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe E-W, Ramanathan LS, Yu S, Benicewicz BC (2005) Fuel Cells 5:287CrossRefGoogle Scholar
  44. 44.
    Saegusa Y, Horikiri M, Nakamura S (1997) Macromol Chem Phys 198:619CrossRefGoogle Scholar
  45. 45.
    Chuang S-W, Hsu SL-C (2006) J Polym Sci Part A Polym Chem 44:4508CrossRefGoogle Scholar
  46. 46.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Science 315:220CrossRefGoogle Scholar
  47. 47.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493CrossRefGoogle Scholar
  48. 48.
    Bashyam R, Zelanay P (2006) Nature 443:63CrossRefGoogle Scholar
  49. 49.
    Staiti P, Minutoli M (2001) J Power Sources 94:9CrossRefGoogle Scholar
  50. 50.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2007) Electrochim Acta 52:3910CrossRefGoogle Scholar
  51. 51.
    He R, Li Q, Xiao G, Bjerrum NJ (2003) J Memb Sci 226:169CrossRefGoogle Scholar
  52. 52.
    Hasiotis C, Deimede V, Kontoyannis C (2001) Electrochim Acta 46:2401CrossRefGoogle Scholar
  53. 53.
    Li Q, Pan C, Jensen JO, Noyé P, Bjerrum NJ (2007) Chem Mater 19:350CrossRefGoogle Scholar
  54. 54.
    Metha V, Cooper JS (2003) J Power Sources 114:32CrossRefGoogle Scholar
  55. 55.
    Litster S, Mclean G (2004) J Power Sources 130:61CrossRefGoogle Scholar
  56. 56.
    Lobato J, Rodrigo MA, Linares JJ, Scott K (2006) J Power Sources 157:284CrossRefGoogle Scholar
  57. 57.
    Seland F, Berning T, Børresen B, Tunold R (2006) J Power Sources 160:27CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Duckworth WE (1968) Statistical techniques in technological research. Methuen, LondonGoogle Scholar
  60. 60.
    Montgomery DC (1976) Design and analysis of experiments. Wiley, New YorkGoogle Scholar
  61. 61.
    Grujicic M, Chittajallu KM (2004) Appl Surf Sci 227:56CrossRefGoogle Scholar
  62. 62.
    Chaudhary VA, Mulla IS, Sainkar SR, Mandale AB, Vijayamohanan K (2000) Sens Actuators 79:224CrossRefGoogle Scholar
  63. 63.
    Kannan AM, Shukla AK, Hamnett A (1988) J Appl Electrochem 18:149CrossRefGoogle Scholar
  64. 64.
    Iwakura Y, Uno K, Imai Y (1964) J Polym Sci Part A 2:2605CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. Kannan
    • 1
  • Md. N. Islam
    • 1
  • D. Rathod
    • 1
  • M. Vijay
    • 1
  • U. K. Kharul
    • 1
  • P. C. Ghosh
    • 1
  • K. Vijayamohanan
    • 1
  1. 1.National Chemical LaboratoryPuneIndia

Personalised recommendations