Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 4, pp 477–482 | Cite as

Electrochemical performance of chemically synthesized oligo-indole as a positive electrode for lithium rechargeable batteries

  • Kwang Sun Ryu
  • Kwang Man Kim
Original Paper

Abstract

Indole monomer was chemically polymerized to produce polyindole (PI) powder for use as a positive electrode material for lithium rechargeable batteries. Although the PI obtained was an oligomer with a low molecular weight corresponding to just 3 indole units, its electrochemical properties exhibited high d.c. electric conductivity comparable to that of the highly conducting polyaniline-LiPF6 or LiAsF6. A charge separation mechanism was also suggested to describe charge/discharge behavior of the oligo-indole (OI) protonated and/or lithiated in the Li||OI battery. Moreover, the lithium rechargeable battery adopting the OI as a positive electrode showed good cycleability with a discharge capacity of ∼55 mAh g−1, which did not decay until after more than 100 cycles.

Keywords

Conducting polymer Indole Oligo-indole Lithium rechargeable battery 

Notes

Acknowledgement

This work was supported by the 2007 Research Fund of University of Ulsan (Project No. 2007-0174).

References

  1. 1.
    Talbi H, Ghanbaja J, Billaud D, Humbert B (1997) Polymer 38:2099CrossRefGoogle Scholar
  2. 2.
    Saraji M, Bagheri A (1998) Synth Met 98:57CrossRefGoogle Scholar
  3. 3.
    Billaud D, Maarouf EB, Hannecart E (1994) Polymer 35:2010CrossRefGoogle Scholar
  4. 4.
    Pandey PC, Prakash R (1998) J Electrochem Soc 145:4103CrossRefGoogle Scholar
  5. 5.
    Pandey PC, Prakash R (1998) J Electrochem Soc 145:999CrossRefGoogle Scholar
  6. 6.
    Talbi H, Maarouf EB, Humbert B, Alnot M, Ehrhardt JJ, Ghanbaja J, Billaud D (1996) J Phys Chem Solids 57:1145CrossRefGoogle Scholar
  7. 7.
    Ghita M, Arrigan DWM (2004) Electroanalysis 16:979CrossRefGoogle Scholar
  8. 8.
    Abthagir PS, Saraswathi R (2004) Thermochim Acta 424:25CrossRefGoogle Scholar
  9. 9.
    Erlandsson R, Lundstrom I (1983) J Phys 44:713Google Scholar
  10. 10.
    Billaud D, Maarouf EM, Hannecart E (1994) Mater Res Bull 29:1239CrossRefGoogle Scholar
  11. 11.
    Billaud D, Maarouf EB, Hannecart E (1995) Synth Met 69:571CrossRefGoogle Scholar
  12. 12.
    Billaud D, Hannecart E, Franquist C (Solvay) (1994) US Pat 5290891Google Scholar
  13. 13.
    Kaneko S, Nishiyama T, Fujiwara M, Harada G, Kurosaki M (NEC Tokin) (2003) US Pat 6509116Google Scholar
  14. 14.
    Zotti G, Zecchin S, Schiavon G, Seraglia R, Berlin A, Canavesi A (1994) Chem Mater 6:1742CrossRefGoogle Scholar
  15. 15.
    Xu J, Hou J, Zhou W, Nie G, Pu S, Zhang S (2006) Spectrochim Acta Part A 63:723CrossRefGoogle Scholar
  16. 16.
    Machida K, Takenouchi H, Hiraki R, Naoi K (2005) Electrochemistry 73:489Google Scholar
  17. 17.
    Mott NF, Davis E (1979) Electronic processes in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  18. 18.
    Jung JH, Kim BH, Moon BW, Joo J, Chang SH, Ryu KS (2001) Phys Rev B 64:035101CrossRefGoogle Scholar
  19. 19.
    Cai Z, Geng M, Tang Z (2004) J Mater Sci 39:4001CrossRefGoogle Scholar
  20. 20.
    Wang J, Chen J, Konstantinov K, Zhao L, Ng SH, Wang GX, Guo ZP, Liu HK (2006) Electrochim Acta 51:4634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of ChemistryUlsan UniversityUlsanSouth Korea
  2. 2.Ionics Devices TeamElectronics & Telecommunications Research Institute (ETRI)DaejonSouth Korea

Personalised recommendations