Advertisement

Journal of Applied Electrochemistry

, Volume 38, Issue 3, pp 395–402 | Cite as

Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions

  • M. Dabalà
  • B. G. Pollet
  • V. Zin
  • E. Campadello
  • T. J. Mason
Original Paper

Abstract

This paper describes the production of alloy nanoparticles of Co:Fe ratio 65:35 from Aotani solutions in the presence of high power ultrasound (20 kHz). The production of this new type of alloy nanoparticles was performed potentiostatically and galvanostatically at (298 ± 1) K using a newly designed experimental set-up i.e. a ‘sonoelectrode’ producing short applied current pulses triggered and followed immediately by ultrasonic pulses. It was shown that cathode efficiencies decreased with increasing current densities and high nanoparticle yields were obtained at low current densities. Morphological and structural studies of the produced nanoparticles were performed by TEM, SEM, XRD, and SAED, and showed that the strongly aggregated Co65Fe35 alloy nanoparticles were predominantly formed, with prevalent body-centered cubic bcc crystalline structure; no redissolution of the nanoaggregates was observed and no separate Fe and Co metallic nanoparticles were produced sonoelectrochemically. The experimental value of the lattice parameter for bcc Co–Fe alloy was 2.85 Å and was in excellent agreement with literature values.

Keywords

Sonochemistry Electrochemistry Nanoparticles Power ultrasound 

Notes

Acknowledgement

The authors thank the European Community Sixth Framework Program through a STREP grant to the SELECTNANO Consortium, Contract No. 516922.03/25/2005.

References

  1. 1.
    Mason TJ, Lorimer JP, Walton DJ (1990) Ultrason 28:333CrossRefGoogle Scholar
  2. 2.
    Pollet BG, Phull SS (2001) In: Recent research developments in electrochemistry, chapt 4. Transworld Research Network Publisher, India, p 55Google Scholar
  3. 3.
    Viennet R, Ligier V, Hihn J-Y, Bereiziat D, Nika P, Doche M-L (2004) Ultrason Sonochem 11(3–4):125CrossRefGoogle Scholar
  4. 4.
    Lorimer JP, Pollet B, Phull SS, Mason TJ, Walton DJ (1998) Electrochim Acta 43:449CrossRefGoogle Scholar
  5. 5.
    Pollet BG, Hihn J-Y, Doche M-L, Lorimer JP, Mandroyan A, Mason TJ (2007) J Electrochem Soc 154(10):E131CrossRefGoogle Scholar
  6. 6.
    Bai ZG, Yu DP, Wang JJ, Zou YH, Qian W, Fu JS, Feng SQ, Xu J, You LP (2000) Mater Sci Eng B72:117CrossRefGoogle Scholar
  7. 7.
    Gedanken A (2004) Ultrason Sonochem 11:47CrossRefGoogle Scholar
  8. 8.
    Qiu J-M, Bai J, Wang J-P (2006) Appl Phys Lett 89(22):222506/1CrossRefGoogle Scholar
  9. 9.
    Ashassi-Sorkhabi H, Ghalebsaz-Jeddi N (2006) Ultrason Sonochem 13(2):180CrossRefGoogle Scholar
  10. 10.
    Morales AM, Lieber CM (1998) Science 279(5348):208CrossRefGoogle Scholar
  11. 11.
    Li SY, Lee CY, Tseng TY (2003) J Cryst Growth 247(3–4):357CrossRefGoogle Scholar
  12. 12.
    Zhan Y, Zheng C, Liu YK, Wang G (2003) Mater Lett 57:3265CrossRefGoogle Scholar
  13. 13.
    Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gnani D, Martinelli G (1999) Sens Actuator B Chem 58(1–3):338CrossRefGoogle Scholar
  14. 14.
    Reisse J, Francois H, Vandercammen J, Fabre O, Kirsch-de Mesmaeker A, Maerschalk C, Delplancke JL (1994) Electrochim Acta 39(1):37CrossRefGoogle Scholar
  15. 15.
    Suslick KS, Price GJ (1999) Annu Rev Mater Soc 29:295CrossRefGoogle Scholar
  16. 16.
    Delplancke JL, Dille J, Reisse J, Long GJ, Mohan A, Grandjean F (2000) Chem Mater 12:946CrossRefGoogle Scholar
  17. 17.
    Xu C, Xu G, Liu Y, Zhao X, Wang G (2002) Scripta Mater 46:789CrossRefGoogle Scholar
  18. 18.
    Zhou H, Cai W, Zhand L (1999) Mater Res Bull 34:845CrossRefGoogle Scholar
  19. 19.
    Lee ST, Wang N, Lee CS (2000) Mater Sci Eng A286(1):16Google Scholar
  20. 20.
    Guzman M, Delplancke JL, Long GJ, Delwiche J, Hubin-Franskin MJ, Grandjean F (2002) J Appl Phys 92:2634CrossRefGoogle Scholar
  21. 21.
    Mancier V, Delplancke JL, Delwiche J, Hubin-Franskin MJ, Piquer C, Rebbouh L, Grandjean F (2004) J Magn Magn Mater 281:27CrossRefGoogle Scholar
  22. 22.
    Jiang LP, Wang AN, Zhao Y, Zhang JR, Zhu JJ (2004) Inorg Chem Commun 7:506CrossRefGoogle Scholar
  23. 23.
    Reisse J, Caulier T, Deckerkheer C, Fabre O, Vandercammen J, Delplancke JL, Winand R (1996) Ultrason Sonochem 3:S147CrossRefGoogle Scholar
  24. 24.
    Delplancke JL, Bouesnard O, Reisse J, Winand R (1997) Mater Soc Symp Proc 451:383Google Scholar
  25. 25.
    Debouttiere P-J, Roux S, Vocanson F, Billotey C, Beuf O, Favre-Reguillon A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Adv Funct Mater 16(18):2330CrossRefGoogle Scholar
  26. 26.
    Delplancke JL (2003) In: Baraton M-I (ed) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publisher, CaliforniaGoogle Scholar
  27. 27.
    Pollet BG, Lorimer JP, Hihn J-Y, Phull SS, Mason TJ, Walton DJ (2002) Ultrason Sonochem 9:267CrossRefGoogle Scholar
  28. 28.
    Jones DA (1992) Principles and prevention of corrosion. Macmillan Publishing Company, New YorkGoogle Scholar
  29. 29.
    Brenner A (1963) Electrodeposition of alloys: principles and practices. Academic Press, New YorkGoogle Scholar
  30. 30.
    Aotani K (1952) J Electrochem Soc Jpn 20:31Google Scholar
  31. 31.
    Kim D, Park D-Y, Yoo BY, Sumodjo PTA, Myung NV (2003) Electrochim Acta 48:819CrossRefGoogle Scholar
  32. 32.
    Margulis MA, Malt’sev AN (1969) Russ J Phys Chem (Transl Khim Zh Fiz) 43:1055Google Scholar
  33. 33.
    Margulis MA, Margulis IM (2003) Ultrason Sonochem 10:343CrossRefGoogle Scholar
  34. 34.
    Correira AN, De Oliveira RCB, De Lima-Neto P (2006) J Braz Chem Soc 17(1):90Google Scholar
  35. 35.
    Sasaki KJ, Talbot JB (1995) J Electrochem Soc 142(3):775CrossRefGoogle Scholar
  36. 36.
    Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Environ Sci Technol 39(5):1221CrossRefGoogle Scholar
  37. 37.
    Young RA (1993) The rietveld method. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    Smithells CJ (1962) Metal reference book, vol 1. Butterworths, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Dabalà
    • 1
  • B. G. Pollet
    • 2
  • V. Zin
    • 1
  • E. Campadello
    • 1
  • T. J. Mason
    • 3
  1. 1.DIMEG—University of PaduaPadovaItaly
  2. 2.Fuel Cells Group, Chemical Engineering DepartmentThe University of BirminghamBirminghamUK
  3. 3.Faculty of Health and Life SciencesCoventry UniversityCoventryUK

Personalised recommendations