Skip to main content
Log in

Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes the production of alloy nanoparticles of Co:Fe ratio 65:35 from Aotani solutions in the presence of high power ultrasound (20 kHz). The production of this new type of alloy nanoparticles was performed potentiostatically and galvanostatically at (298 ± 1) K using a newly designed experimental set-up i.e. a ‘sonoelectrode’ producing short applied current pulses triggered and followed immediately by ultrasonic pulses. It was shown that cathode efficiencies decreased with increasing current densities and high nanoparticle yields were obtained at low current densities. Morphological and structural studies of the produced nanoparticles were performed by TEM, SEM, XRD, and SAED, and showed that the strongly aggregated Co65Fe35 alloy nanoparticles were predominantly formed, with prevalent body-centered cubic bcc crystalline structure; no redissolution of the nanoaggregates was observed and no separate Fe and Co metallic nanoparticles were produced sonoelectrochemically. The experimental value of the lattice parameter for bcc Co–Fe alloy was 2.85 Å and was in excellent agreement with literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mason TJ, Lorimer JP, Walton DJ (1990) Ultrason 28:333

    Article  CAS  Google Scholar 

  2. Pollet BG, Phull SS (2001) In: Recent research developments in electrochemistry, chapt 4. Transworld Research Network Publisher, India, p 55

  3. Viennet R, Ligier V, Hihn J-Y, Bereiziat D, Nika P, Doche M-L (2004) Ultrason Sonochem 11(3–4):125

    Article  CAS  Google Scholar 

  4. Lorimer JP, Pollet B, Phull SS, Mason TJ, Walton DJ (1998) Electrochim Acta 43:449

    Article  CAS  Google Scholar 

  5. Pollet BG, Hihn J-Y, Doche M-L, Lorimer JP, Mandroyan A, Mason TJ (2007) J Electrochem Soc 154(10):E131

    Article  CAS  Google Scholar 

  6. Bai ZG, Yu DP, Wang JJ, Zou YH, Qian W, Fu JS, Feng SQ, Xu J, You LP (2000) Mater Sci Eng B72:117

    Article  CAS  Google Scholar 

  7. Gedanken A (2004) Ultrason Sonochem 11:47

    Article  CAS  Google Scholar 

  8. Qiu J-M, Bai J, Wang J-P (2006) Appl Phys Lett 89(22):222506/1

    Article  Google Scholar 

  9. Ashassi-Sorkhabi H, Ghalebsaz-Jeddi N (2006) Ultrason Sonochem 13(2):180

    Article  CAS  Google Scholar 

  10. Morales AM, Lieber CM (1998) Science 279(5348):208

    Article  CAS  Google Scholar 

  11. Li SY, Lee CY, Tseng TY (2003) J Cryst Growth 247(3–4):357

    Article  CAS  Google Scholar 

  12. Zhan Y, Zheng C, Liu YK, Wang G (2003) Mater Lett 57:3265

    Article  CAS  Google Scholar 

  13. Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gnani D, Martinelli G (1999) Sens Actuator B Chem 58(1–3):338

    Article  Google Scholar 

  14. Reisse J, Francois H, Vandercammen J, Fabre O, Kirsch-de Mesmaeker A, Maerschalk C, Delplancke JL (1994) Electrochim Acta 39(1):37

    Article  CAS  Google Scholar 

  15. Suslick KS, Price GJ (1999) Annu Rev Mater Soc 29:295

    Article  CAS  Google Scholar 

  16. Delplancke JL, Dille J, Reisse J, Long GJ, Mohan A, Grandjean F (2000) Chem Mater 12:946

    Article  CAS  Google Scholar 

  17. Xu C, Xu G, Liu Y, Zhao X, Wang G (2002) Scripta Mater 46:789

    Article  CAS  Google Scholar 

  18. Zhou H, Cai W, Zhand L (1999) Mater Res Bull 34:845

    Article  CAS  Google Scholar 

  19. Lee ST, Wang N, Lee CS (2000) Mater Sci Eng A286(1):16

    CAS  Google Scholar 

  20. Guzman M, Delplancke JL, Long GJ, Delwiche J, Hubin-Franskin MJ, Grandjean F (2002) J Appl Phys 92:2634

    Article  CAS  Google Scholar 

  21. Mancier V, Delplancke JL, Delwiche J, Hubin-Franskin MJ, Piquer C, Rebbouh L, Grandjean F (2004) J Magn Magn Mater 281:27

    Article  CAS  Google Scholar 

  22. Jiang LP, Wang AN, Zhao Y, Zhang JR, Zhu JJ (2004) Inorg Chem Commun 7:506

    Article  CAS  Google Scholar 

  23. Reisse J, Caulier T, Deckerkheer C, Fabre O, Vandercammen J, Delplancke JL, Winand R (1996) Ultrason Sonochem 3:S147

    Article  CAS  Google Scholar 

  24. Delplancke JL, Bouesnard O, Reisse J, Winand R (1997) Mater Soc Symp Proc 451:383

    CAS  Google Scholar 

  25. Debouttiere P-J, Roux S, Vocanson F, Billotey C, Beuf O, Favre-Reguillon A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Adv Funct Mater 16(18):2330

    Article  CAS  Google Scholar 

  26. Delplancke JL (2003) In: Baraton M-I (ed) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publisher, California

    Google Scholar 

  27. Pollet BG, Lorimer JP, Hihn J-Y, Phull SS, Mason TJ, Walton DJ (2002) Ultrason Sonochem 9:267

    Article  CAS  Google Scholar 

  28. Jones DA (1992) Principles and prevention of corrosion. Macmillan Publishing Company, New York

    Google Scholar 

  29. Brenner A (1963) Electrodeposition of alloys: principles and practices. Academic Press, New York

    Google Scholar 

  30. Aotani K (1952) J Electrochem Soc Jpn 20:31

    CAS  Google Scholar 

  31. Kim D, Park D-Y, Yoo BY, Sumodjo PTA, Myung NV (2003) Electrochim Acta 48:819

    Article  CAS  Google Scholar 

  32. Margulis MA, Malt’sev AN (1969) Russ J Phys Chem (Transl Khim Zh Fiz) 43:1055

    CAS  Google Scholar 

  33. Margulis MA, Margulis IM (2003) Ultrason Sonochem 10:343

    Article  CAS  Google Scholar 

  34. Correira AN, De Oliveira RCB, De Lima-Neto P (2006) J Braz Chem Soc 17(1):90

    Google Scholar 

  35. Sasaki KJ, Talbot JB (1995) J Electrochem Soc 142(3):775

    Article  CAS  Google Scholar 

  36. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Environ Sci Technol 39(5):1221

    Article  CAS  Google Scholar 

  37. Young RA (1993) The rietveld method. Oxford University Press, Oxford

    Google Scholar 

  38. Smithells CJ (1962) Metal reference book, vol 1. Butterworths, London

    Google Scholar 

Download references

Acknowledgement

The authors thank the European Community Sixth Framework Program through a STREP grant to the SELECTNANO Consortium, Contract No. 516922.03/25/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Pollet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabalà, M., Pollet, B.G., Zin, V. et al. Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. J Appl Electrochem 38, 395–402 (2008). https://doi.org/10.1007/s10800-007-9450-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9450-x

Keywords

Navigation