Journal of Applied Electrochemistry

, Volume 38, Issue 3, pp 371–375 | Cite as

NiCoFe/C cathode electrocatalysts for direct ethanol fuel cells

  • Namsin Park
  • Takeyuki Shiraishi
  • Kazuyoshi Kamisugi
  • Yoshitaka Hara
  • Keita Iizuka
  • Takashi Kado
  • Shuzi Hayase
Original Paper


A direct ethanol fuel cell (DEFC), which is less prone to ethanol crossover, is reported. The cell consists of PtRu/C catalyst as the anode, Nafion® 117 membrane, and Ni–Co–Fe (NCF) composite catalyst as the cathode. The NCF catalyst was synthesized by mixing Ni, Co, and Fe complexes into a polymer matrix (melamine-formaldehyde resins), followed by heating the mixture at 800 °C under inert atmosphere. TEM and EDX experiments suggest that the NCF catalyst has alloy structures of Ni, Co and Fe. The catalytic activity of the NCF catalyst for the oxygen reduction reaction (ORR) was compared with that of commercially available Pt/C (CAP) catalyst at different ethanol concentrations. The decrease in open circuit voltage (Voc) of the DEFC equipped with the NCF catalysts was less than that of CAP catalyst at higher ethanol concentrations. The NCF catalyst was less prone to ethanol oxidation at cathode even when ethanol crossover occurred through the Nafion®117 film, which prevents voltage drop at the cathode. However, the CAP catalyst did oxidize ethanol at the cathode and caused a decrease in voltage at higher ethanol concentrations.


Oxygen reduction Direct ethanol fuel cells Ethanol crossover Ni–Co–Fe 


  1. 1.
    Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127:112CrossRefGoogle Scholar
  2. 2.
    Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou JS (1999) Biotechnol Prog 15:855CrossRefGoogle Scholar
  3. 3.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283CrossRefGoogle Scholar
  4. 4.
    Iwashita T, Braz J (2002) Chem Soc 13:401Google Scholar
  5. 5.
    Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384CrossRefGoogle Scholar
  6. 6.
    Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Leontidis V, Kontou S, Tsiakaras P (2005) Int J Hydrogen Energy 30:995CrossRefGoogle Scholar
  7. 7.
    Markovic NM, Gasteiger HA, Ross PN (Jr) (1996) J Phys Chem 100:6715CrossRefGoogle Scholar
  8. 8.
    Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2006) J Electrochem Soc 153:A1955CrossRefGoogle Scholar
  9. 9.
    Raghuveer V, Manthiram A, Bard AJ (2005) J Phys Chem B 109:22909CrossRefGoogle Scholar
  10. 10.
    Xiong L, Manthiram A (2004) Electrochim Acta 49:4163CrossRefGoogle Scholar
  11. 11.
    Einsla BR, Kim YS, Hickner MA, Hong YT, Hill ML, Pivovar BS (2005) J Membr Soc 255:141CrossRefGoogle Scholar
  12. 12.
    Song S, Zhou W, Tian J, Cai R, Sun G, Xin Q, Kontou S, Tsiakaras P (2005) J Power Sources 145:266CrossRefGoogle Scholar
  13. 13.
    Leger JM, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) Electrochim Acta 50:5118CrossRefGoogle Scholar
  14. 14.
    Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM (2004) Electrochim Acta 49:3901CrossRefGoogle Scholar
  15. 15.
    Liu F, Lu G, Wang CY (2006) J Electrochem Soc 153:543CrossRefGoogle Scholar
  16. 16.
    Song S, Wang G, Zhou W, Zhao X, Sun G, Xin Q, Kontou S, Tsiakaras P (2005) J Power Sources 140:103CrossRefGoogle Scholar
  17. 17.
    Sun GQ, Wang JT, Savinell RF (1998) J Appl Electrochem 28:1087CrossRefGoogle Scholar
  18. 18.
    Luo J, Wang L, Mott D, Njoki PN, Kariuki N, Zhong CM, He T (2006) J Mater Chem 16:1665CrossRefGoogle Scholar
  19. 19.
    Armstrong FA (2005) Current Opin Chem Biol 9:110CrossRefGoogle Scholar
  20. 20.
    Jones AK, Sillery E, Albracht SPJ, Armstrong FA (2002) Chem Commun 866Google Scholar
  21. 21.
    Topcagic S, Minteer SD (2006) Electrochim Acta 51:2168CrossRefGoogle Scholar
  22. 22.
    Bert P, Bianchini C (2004) International Patent WO 2004/036674 A2Google Scholar
  23. 23.
    Witherspoon RR (1993) US Patent 5,240,893Google Scholar
  24. 24.
    Hui CL, Li XG, Hsing IM (2005) Electrochim Acta 51:711CrossRefGoogle Scholar
  25. 25.
    Zhang DY, Ma ZF, Wang G, Konstantinov K, Yuan X, Liu HK (2006) Electrochem Solid-State Lett 9:423CrossRefGoogle Scholar
  26. 26.
    Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE (2006) J Electrochem Soc 153:1812Google Scholar
  27. 27.
    Liu Z, Yi X, Su X, Lee JY, Gan LM (2005) J Power Sources 149:1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Namsin Park
    • 1
  • Takeyuki Shiraishi
    • 1
  • Kazuyoshi Kamisugi
    • 1
  • Yoshitaka Hara
    • 1
  • Keita Iizuka
    • 1
  • Takashi Kado
    • 1
  • Shuzi Hayase
    • 1
  1. 1.Kyushu Institute of TechnologyWakamatsu-ku, KitakyushuJapan

Personalised recommendations