Journal of Applied Electrochemistry

, Volume 38, Issue 1, pp 77–82 | Cite as

Comparative study of lead-acid batteries for photovoltaic stand-alone lighting systems

  • B. Hariprakash
  • S. K. Martha
  • S. Ambalavanan
  • S. A. Gaffoor
  • A. K. Shukla
Original Paper


The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts.


AGM-VRLA battery Flooded-electrolyte lead-acid battery Gelled-electrolyte VRLA battery Hybrid VRLA battery Photovoltaic lighting 



We thank R. A. Mashelkar FRS for encouragement. Financial support from CSIR, New Delhi, is gratefully acknowledged.


  1. 1.
    Shukla AK, Manoharan R, Ramesh KV (1983) Bull Mater Sci 5:267CrossRefGoogle Scholar
  2. 2.
    Hu C, White RM (1983) Solar cells. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Green MA (1982) Solar cells. Prentice-Hall Inc., EnglewoodGoogle Scholar
  4. 4.
    Dell RM, Rand DAJ (2002) Understanding batteries. Royal Society of Chemistry, CambridgeGoogle Scholar
  5. 5.
    Moseley PT, Rand DAJ (2004) In: Rand DAJ, Moseley PT, Garche J, Parker CD (eds) Valve-regulated lead-acid batteries, 1st edn. ElsevierGoogle Scholar
  6. 6.
    Schaetzle HJ, Boden DP (1979) J Power Sources 4:327CrossRefGoogle Scholar
  7. 7.
    Sato H (1989) J Power Sources 28:173CrossRefGoogle Scholar
  8. 8.
    Armenta C (1989) Solar Wind Technol 6:541CrossRefGoogle Scholar
  9. 9.
    Spiers DJ, Rasinkoski AD (1995) J Power Sources 53:245CrossRefGoogle Scholar
  10. 10.
    Garche J, Jossen A, Döring H (1997) J Power Sources 67:201CrossRefGoogle Scholar
  11. 11.
    Perrin M, Döring H, Ihmels K, Weiss A, Vogel E, Wagner R (2002) J Power Sources 105:114CrossRefGoogle Scholar
  12. 12.
    Sauer DU (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. John Wiley, New YorkGoogle Scholar
  13. 13.
    Thomson M, Infield D (2003) Renew Energy Desalin 153:1Google Scholar
  14. 14.
    Jossen A, Garche J, Sauer DU (2004) Solar Energy 76:759CrossRefGoogle Scholar
  15. 15.
    Benchetrite D, Gall ML, Bach O, Perrin M, Mattera F (2005) J Power Sources 144:346CrossRefGoogle Scholar
  16. 16.
    Perrin M, Saint-Drenan YM, Mattera F Malbranche P (2005) J Power Sources 144:402CrossRefGoogle Scholar
  17. 17.
    Mattera F, Benchetrite D, Desmettre D, Martin JL, Potteau E (2003) J Power Sources 116:248CrossRefGoogle Scholar
  18. 18.
    Larminie J, Lowry J (2003) Electric vehicle technology explained. John Wiley & Sons, Ltd., EnglandGoogle Scholar
  19. 19.
    Martha SK, Hariprakash B, Gaffoor SA, Ambalavanan S, Shukla AK (2005) J Power Sources 144:560CrossRefGoogle Scholar
  20. 20.
    Newnham RH, Baldsing WGA (1996) J Power Sources 59:137CrossRefGoogle Scholar
  21. 21.
    Zguris GC (2000) J Power Sources 88:36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • B. Hariprakash
    • 1
  • S. K. Martha
    • 1
  • S. Ambalavanan
    • 2
  • S. A. Gaffoor
    • 3
  • A. K. Shukla
    • 1
    • 2
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Central Electrochemical Research InstituteKaraikudiIndia
  3. 3.NED Energy LtdHyderabadIndia

Personalised recommendations