Journal of Applied Electrochemistry

, Volume 38, Issue 1, pp 17–24 | Cite as

Methanol and formic acid oxidation in zinc electrowinning under process conditions

  • M. Wesselmark
  • C. Lagergren
  • G. Lindbergh
Original Paper


The possibility of using methanol or formic acid oxidation as the anode process in zinc electrowinning was examined. The activity for methanol and formic acid oxidation on Pt coated high surface area electrodes was investigated over 36 h, at a current density used in industry. The activity could be maintained at a constant potential level in a synthetic electrowinning electrolyte if the current was reversed for short periods. During the tests, the anode potential was, more than 1.2 V below the potential for the oxygen evolving lead anodes used in modern zinc electrowinning. The lowered anode potential would lead to a significant energy reduction. However, tests in industrial electrolyte resulted in a very low activity for both methanol and formic acid oxidation. The low activity was shown to be caused mainly by chloride impurities. A reduction of the chloride content below 10−5 M is needed in order to obtain sufficient activity for methanol oxidation on Pt for use in zinc electrowinning. Pt and PtRu electrodes were compared regarding their activity for methanol oxidation and the latter was shown to be more affected by chloride impurities. However, at a potential of 0.7 V vs NHE, with a chloride content of 10−4 M, formic acid oxidation on PtRu gives the highest current density.


Anode reaction Zinc electrowinning Formic acid Methanol 



Financial support from Permascand AB and Vinnova is gratefully acknowledged. Boliden Kokkola Oy is acknowledged for the provision of industrial electrolyte and Permascand AB for the provision of electrodes.


  1. 1.
    Shierle Th, Hein K (1993) Erzmetall 46(3):164Google Scholar
  2. 2.
    Nijjer S, Thonstad J, Haarberg GM (2001) Electrochim Acta 46:3503CrossRefGoogle Scholar
  3. 3.
    Vereecken J, Winand R (1972) Electrochim Acta 17:271CrossRefGoogle Scholar
  4. 4.
    Vining PH, Scott JA, Duby PF (1981) Aqueous electrowinn met US-patent 4279711Google Scholar
  5. 5.
    Mushiake K, Masuko N, Takahashi M (1985) Metallurg Rev MMIJ 2(2):35Google Scholar
  6. 6.
    Watanabe M, Makita K, Usami H, Motoo S (1986) J Electroanal Chem 197(1–2):195CrossRefGoogle Scholar
  7. 7.
    Vereecken J, Capel-Boute C, Winand R (1970) Metallurgie X 10(4):113Google Scholar
  8. 8.
    Breiter MW (1964) Electrochim Acta 9(6):827CrossRefGoogle Scholar
  9. 9.
    Markovic N, Ross PN (1992) J Electroanal Chem 330(1–2):499CrossRefGoogle Scholar
  10. 10.
    Zhao X, Sun G, Jiang L, Chen W, Tang S, Zhou B, Xin Q (2005) Electrochem Solid-State Lett 8(3):A149CrossRefGoogle Scholar
  11. 11.
    Horányi G, Vértes G (1974) J Electroanal Chem 51:417CrossRefGoogle Scholar
  12. 12.
    Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 508:41CrossRefGoogle Scholar
  13. 13.
    Pérez MC, Rincón A, Gutiérrez C (2001) J Electroanal Chem 511:39CrossRefGoogle Scholar
  14. 14.
    Li N, Lipkowski J (2000) Electroanal Chem 491:95CrossRefGoogle Scholar
  15. 15.
    Vielstich W (2003) In: Bard AJ, Stratmann M, (eds) Encyclopedia of electrochemistry, vol 2. Wiley-VCH, Darmstadt, p 466Google Scholar
  16. 16.
    Hamnett A (1997) Catal Today 38:445CrossRefGoogle Scholar
  17. 17.
    Lamy C, LeRhun AL, Delime F, Coutanceau C, Léger J-M (2002) J Power Sources 105:283CrossRefGoogle Scholar
  18. 18.
    Spendelow JS, Babu PK, Wieckowski A (2005) Curr Opin Solid St M 9:37Google Scholar
  19. 19.
    Housmans THM, Wonders AdH, Koper MTM (2006) J Phys Chem B 110:10021CrossRefGoogle Scholar
  20. 20.
    Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M (2005) J Phys Chem B 109:11622CrossRefGoogle Scholar
  21. 21.
    Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) J Electroanal Chem 571:273CrossRefGoogle Scholar
  22. 22.
    Lovic JD, Tripkovic AV, Gojkovic SLj, Popovic KDj, Tripkovic DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581:294CrossRefGoogle Scholar
  23. 23.
    Watanabe M, Motoo S (1975) J Electroanal Chem 60:267CrossRefGoogle Scholar
  24. 24.
    Samjeské G, Miki A, Ye S, Osawa M (2006) J Phys Chem B 110:16559CrossRefGoogle Scholar
  25. 25.
    Santos MC, Bulhões LOS. (2004) Electrochim Acta 49(12):1893CrossRefGoogle Scholar
  26. 26.
    Chen YX, Ye S, Heinen M, Jusys Z, Osawa M, Behm RJ (2006) J Phys Chem B 110:9534CrossRefGoogle Scholar
  27. 27.
    Tripkovic AV, Popovic KDj, Lovic JD, Markovic NM, Radmilovic V (2005) Mat Sci Forum 494:223CrossRefGoogle Scholar
  28. 28.
    Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229CrossRefGoogle Scholar
  29. 29.
    Maciá MD, Herrero E, Feliu JM (2003) J Electroanal Chem 554:25CrossRefGoogle Scholar
  30. 30.
    Schmidt TJ, Behm RJ, Grgur BN, Markovic NM, Ross PN (2000) Langmuir 16:8159CrossRefGoogle Scholar
  31. 31.
    Wesselmark M, Lagergren C, Lindbergh G (2005) J Electrochem Soc 152:D201CrossRefGoogle Scholar
  32. 32.
    Iwasita T (2000) Electrochim Acta 47:3663CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Duby PF, Scott JA (1985) Proc Energy Reduct Tech Met Electrochem Processes: Fuel-assisted metal electrowinning p 339Google Scholar
  35. 35.
    Bérubé LPh, Piron DL (1987) J Electrochem Soc 134(3):562Google Scholar
  36. 36.
    Beden B, Kadirgan F, Lamy C, Léger J-M (1981) J Electroanal Chem 127:75CrossRefGoogle Scholar
  37. 37.
    Randin J-P (1976) In: Bard AJ, (ed) Encyclopedia of electrochemistry of the Elements VII, Marcel Dekker Inc., New York, p 174Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Technology, Applied ElectrochemistryRoyal Institute of Technology, KTHStockholmSweden

Personalised recommendations