Skip to main content
Log in

Methanol and formic acid oxidation in zinc electrowinning under process conditions

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The possibility of using methanol or formic acid oxidation as the anode process in zinc electrowinning was examined. The activity for methanol and formic acid oxidation on Pt coated high surface area electrodes was investigated over 36 h, at a current density used in industry. The activity could be maintained at a constant potential level in a synthetic electrowinning electrolyte if the current was reversed for short periods. During the tests, the anode potential was, more than 1.2 V below the potential for the oxygen evolving lead anodes used in modern zinc electrowinning. The lowered anode potential would lead to a significant energy reduction. However, tests in industrial electrolyte resulted in a very low activity for both methanol and formic acid oxidation. The low activity was shown to be caused mainly by chloride impurities. A reduction of the chloride content below 10−5 M is needed in order to obtain sufficient activity for methanol oxidation on Pt for use in zinc electrowinning. Pt and PtRu electrodes were compared regarding their activity for methanol oxidation and the latter was shown to be more affected by chloride impurities. However, at a potential of 0.7 V vs NHE, with a chloride content of 10−4 M, formic acid oxidation on PtRu gives the highest current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shierle Th, Hein K (1993) Erzmetall 46(3):164

    Google Scholar 

  2. Nijjer S, Thonstad J, Haarberg GM (2001) Electrochim Acta 46:3503

    Article  CAS  Google Scholar 

  3. Vereecken J, Winand R (1972) Electrochim Acta 17:271

    Article  CAS  Google Scholar 

  4. Vining PH, Scott JA, Duby PF (1981) Aqueous electrowinn met US-patent 4279711

  5. Mushiake K, Masuko N, Takahashi M (1985) Metallurg Rev MMIJ 2(2):35

    CAS  Google Scholar 

  6. Watanabe M, Makita K, Usami H, Motoo S (1986) J Electroanal Chem 197(1–2):195

    Article  CAS  Google Scholar 

  7. Vereecken J, Capel-Boute C, Winand R (1970) Metallurgie X 10(4):113

    CAS  Google Scholar 

  8. Breiter MW (1964) Electrochim Acta 9(6):827

    Article  CAS  Google Scholar 

  9. Markovic N, Ross PN (1992) J Electroanal Chem 330(1–2):499

    Article  CAS  Google Scholar 

  10. Zhao X, Sun G, Jiang L, Chen W, Tang S, Zhou B, Xin Q (2005) Electrochem Solid-State Lett 8(3):A149

    Article  CAS  Google Scholar 

  11. Horányi G, Vértes G (1974) J Electroanal Chem 51:417

    Article  Google Scholar 

  12. Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 508:41

    Article  CAS  Google Scholar 

  13. Pérez MC, Rincón A, Gutiérrez C (2001) J Electroanal Chem 511:39

    Article  Google Scholar 

  14. Li N, Lipkowski J (2000) Electroanal Chem 491:95

    Article  CAS  Google Scholar 

  15. Vielstich W (2003) In: Bard AJ, Stratmann M, (eds) Encyclopedia of electrochemistry, vol 2. Wiley-VCH, Darmstadt, p 466

  16. Hamnett A (1997) Catal Today 38:445

    Article  CAS  Google Scholar 

  17. Lamy C, LeRhun AL, Delime F, Coutanceau C, Léger J-M (2002) J Power Sources 105:283

    Article  CAS  Google Scholar 

  18. Spendelow JS, Babu PK, Wieckowski A (2005) Curr Opin Solid St M 9:37

    Google Scholar 

  19. Housmans THM, Wonders AdH, Koper MTM (2006) J Phys Chem B 110:10021

    Article  CAS  Google Scholar 

  20. Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M (2005) J Phys Chem B 109:11622

    Article  CAS  Google Scholar 

  21. Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) J Electroanal Chem 571:273

    Article  CAS  Google Scholar 

  22. Lovic JD, Tripkovic AV, Gojkovic SLj, Popovic KDj, Tripkovic DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581:294

    Article  CAS  Google Scholar 

  23. Watanabe M, Motoo S (1975) J Electroanal Chem 60:267

    Article  CAS  Google Scholar 

  24. Samjeské G, Miki A, Ye S, Osawa M (2006) J Phys Chem B 110:16559

    Article  CAS  Google Scholar 

  25. Santos MC, Bulhões LOS. (2004) Electrochim Acta 49(12):1893

    Article  CAS  Google Scholar 

  26. Chen YX, Ye S, Heinen M, Jusys Z, Osawa M, Behm RJ (2006) J Phys Chem B 110:9534

    Article  CAS  Google Scholar 

  27. Tripkovic AV, Popovic KDj, Lovic JD, Markovic NM, Radmilovic V (2005) Mat Sci Forum 494:223

    Article  CAS  Google Scholar 

  28. Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229

    Article  CAS  Google Scholar 

  29. Maciá MD, Herrero E, Feliu JM (2003) J Electroanal Chem 554:25

    Article  CAS  Google Scholar 

  30. Schmidt TJ, Behm RJ, Grgur BN, Markovic NM, Ross PN (2000) Langmuir 16:8159

    Article  CAS  Google Scholar 

  31. Wesselmark M, Lagergren C, Lindbergh G (2005) J Electrochem Soc 152:D201

    Article  Google Scholar 

  32. Iwasita T (2000) Electrochim Acta 47:3663

    Article  Google Scholar 

  33. Information from Boliden http://www.boliden.se/www/en/BolidenEN.nsf/c3567de84afaa493c1256f5d003b566e/36D2425D39813478C1256E370030D562/$file/Boliden%20Kokkola_eng.pdf (2006–09–08)

  34. Duby PF, Scott JA (1985) Proc Energy Reduct Tech Met Electrochem Processes: Fuel-assisted metal electrowinning p 339

  35. Bérubé LPh, Piron DL (1987) J Electrochem Soc 134(3):562

    Google Scholar 

  36. Beden B, Kadirgan F, Lamy C, Léger J-M (1981) J Electroanal Chem 127:75

    Article  CAS  Google Scholar 

  37. Randin J-P (1976) In: Bard AJ, (ed) Encyclopedia of electrochemistry of the Elements VII, Marcel Dekker Inc., New York, p 174

Download references

Acknowledgements

Financial support from Permascand AB and Vinnova is gratefully acknowledged. Boliden Kokkola Oy is acknowledged for the provision of industrial electrolyte and Permascand AB for the provision of electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wesselmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesselmark, M., Lagergren, C. & Lindbergh, G. Methanol and formic acid oxidation in zinc electrowinning under process conditions. J Appl Electrochem 38, 17–24 (2008). https://doi.org/10.1007/s10800-007-9387-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9387-0

Keywords

Navigation