Journal of Applied Electrochemistry

, Volume 37, Issue 10, pp 1177–1182 | Cite as

A quartz crystal microbalance study of the kinetics of interaction of benzotriazole with copper

  • F. M. Al Kharafi
  • A. M. Abdullah
  • B. G. Ateya
Original Paper


The kinetics of interaction of benzotriazole (C6H5N3, BTAH) with the surface of copper in salt water were studied using an electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy (XPS). Upon injecting BTAH into the electrolyte, three regions appear in the time response of the microbalance. Region I (at short time of few minutes), exhibits rapid linear growth of mass with time, which is attributed to the formation of a protective Cu(I)BTA complex. Region II reveals attachment of BTAH at a slower rate onto the inner Cu(I)BTA complex. Region III is a plateau indicating that the BTAH film attains an equilibrium mass and thickness, which increase with the concentration of BTAH. The intensity of the N1s peak in the XPS spectra increases with the time of immersion, indicating more BTAH on the surface. The results suggest a duplex inhibitor film composed of an inner thin layer of Cu(I)BTA and an outer layer of physically adsorbed BTAH which increases in thickness with time and BTAH concentration. They also offer an explanation for the much documented findings of simultaneous increase of the polarization resistance and decrease of double layer capacity with inhibitor concentration and time of immersion.


Benzotriazole Copper Corrosion inhibitor Duplex film Quartz crystal microbalance 



The authors gratefully acknowledge support of this work by the Research Administration of Kuwait University, under Grant Numbers SC03/02 and GS01/01.


  1. 1.
    Hashemi T, Hogarth CA (1988) Electrochim Acta 33(8):1123CrossRefGoogle Scholar
  2. 2.
    Fox PG, Lewis G, Boden PJ (1979) Corros Sci 19(7):457CrossRefGoogle Scholar
  3. 3.
    Cotton JB, Scholes IR (1967) Br Corros J London 2(1):1Google Scholar
  4. 4.
    Heakal FE, Haruyama S (1980) Corros Sci 20(7):887CrossRefGoogle Scholar
  5. 5.
    Chan HYH, Weaver MJ (1998) Langmuir 15(9):3348CrossRefGoogle Scholar
  6. 6.
    Polewska W, Vogt MR, Magnussen OM, Behm RJ (1999) J Phys Chem B 103(47):10440CrossRefGoogle Scholar
  7. 7.
    Tromans D, Li G (2002) Electrochem Solid St Lett5(2):5CrossRefGoogle Scholar
  8. 8.
    Schultz ZD, Biggin ME, White JO, Gewirth AA (2004) Anal Chem 76(3):604CrossRefGoogle Scholar
  9. 9.
    Al-Hinai AT, Osseo-Asare K (2003) Electrochem Solid St 6(5):23CrossRefGoogle Scholar
  10. 10.
    Hegde S, Babu SV (2003) Electrochem Solid St 6(10):G126CrossRefGoogle Scholar
  11. 11.
    Tsai TH, Yen SC (2003) Appl Surf Sci 210(3, 4):190CrossRefGoogle Scholar
  12. 12.
    Vogt BD, Lin EK, Wu WL, White CC (2004) J Phys Chem B 108(34):12685CrossRefGoogle Scholar
  13. 13.
    Frignani A, Fonsati M, Monticelli C, Brunoro G (1999) Corros Sci 41(6):1217CrossRefGoogle Scholar
  14. 14.
    Jin-Hua C, Zhi-Cheng L, Shu C, Li-Hua N, Shou-Zhuo Y (1997) Electrochim Acta 43(3, 4):265Google Scholar
  15. 15.
    Telegdi J, Shaban A, Kalman E (2000) Electrochim Acta 45(22):3639CrossRefGoogle Scholar
  16. 16.
    Metikos-Hukovic M, Babic R, Marinovic A (1998) J Electrochem Soc 145(12):4045CrossRefGoogle Scholar
  17. 17.
    Ravichandran R, Rajendran N (2005) Appl Surf Sci 239(2):182CrossRefGoogle Scholar
  18. 18.
    Ravichandran R, Nanjundan S, Rajendran N (2004) J Appl Electrochem 34(11):1171CrossRefGoogle Scholar
  19. 19.
    Papapanayiotou D, Deligianni H, Alkire RC (1998) J Electrochem Soc 145(9):3016CrossRefGoogle Scholar
  20. 20.
    Tantavichet N, Pritzker M (2006) J Appl Electrochem 36(1):49CrossRefGoogle Scholar
  21. 21.
    Scendo M, Malyszko J (2000) J Electrochem Soc 147(5):1758CrossRefGoogle Scholar
  22. 22.
    Schmidt W, Alkire RC, Gewirth AA (1996) J Electrochem Soc 143(10):3122CrossRefGoogle Scholar
  23. 23.
    Deshpande S, Kuiry SC, Klimov M, Obeng Y, Seal S (2004) J Electrochem Soc 151(11):G788; S. Deshpande, Kuiry SC, Klimov M, Seal S (2005) J Electrochem Solid St 8(4):G98Google Scholar
  24. 24.
    Li XJ, Guo DM, Ren RK, Jin ZJ (2006) In: Cai G, Xu X, Kang R (eds) Advances in grinding and abrasive technology XIII, key engineering materials, vol 304, 305. Trans Tech Publications, Switzerland, pp 350–354Google Scholar
  25. 25.
    Fang JY, Tsai MS, Dai BT, Wu SY, Feng MS (2005) Electrochem Solid St 8(5):G128CrossRefGoogle Scholar
  26. 26.
    Babic-Samardzija K, Hackerman N (2005) J Solid St Electrochem 9(7):483CrossRefGoogle Scholar
  27. 27.
    Sayed SY, El-Deab MS, El-Anadouli BE, Ateya BG (2003) J Phys Chem 107(23):5575Google Scholar
  28. 28.
    Cao PG, Yao JL, Zheng JW, Gu RA, Tian ZQ (2002) Langmuir 18(1):100CrossRefGoogle Scholar
  29. 29.
    Brusic V, Frisch MA, Eldredge BN, Novak FP, Kanfman FB, Rush BM, Frankel GS (1991) J Electrochem Soc 138(8):2253CrossRefGoogle Scholar
  30. 30.
    Fenelon AM, Breslin CB (2001) J Appl Electrochem 31(5):509CrossRefGoogle Scholar
  31. 31.
    Walker R (1999) Br Corros J 34(4):304CrossRefGoogle Scholar
  32. 32.
    Walsh JF, Dhariwal HS, Gutierrez-Sosa A, Finetti P, Muryn CA, Brookes NB, Oldman RJ, Thornton G (1998) Surf Sci 415(3):423CrossRefGoogle Scholar
  33. 33.
    Jiang Y, Adams JB, Sun D (2004) J Phys Chem B 108(34):12851CrossRefGoogle Scholar
  34. 34.
    Hegazy HS, Ashour EA, Ateya BG (2001) J Appl Electrochem 31(11):1261CrossRefGoogle Scholar
  35. 35.
    Poling GW (1970) Corros Sci 10(5):359CrossRefGoogle Scholar
  36. 36.
    Mansfield F, Smith T, Parry ET (1971) Corrosion 28(7):289Google Scholar
  37. 37.
    Clerc C, Alkire R (1991) J Electrochem Soc 138(1):25CrossRefGoogle Scholar
  38. 38.
    Alkire R, Cangellari A (1989) J Electrochem Soc 136(4):913CrossRefGoogle Scholar
  39. 39.
    Sauerbrey G (1959) Z Physik 155(206):206CrossRefGoogle Scholar
  40. 40.
    Marx KA (2003) Biomacromolecules 4(5):1099CrossRefGoogle Scholar
  41. 41.
    Zhou A, Xie B, Xie N (2000) Corros Sci 42(3):469CrossRefGoogle Scholar
  42. 42.
    Mansikkamäki K, Ahonen P, Fabricius G, Murtomaki L, Kontturi K (2005) J Electrochem Soc 152(1):B12CrossRefGoogle Scholar
  43. 43.
    Qafsaoui W, Blanc C, Pebere N, Takenouti H, Srhiri A, Mankowski G (2002) Electrochim Acta 47(27):4339CrossRefGoogle Scholar
  44. 44.
    Hepel M, Cateforis E (2001) Electrochim Acta 46(24, 25):3801CrossRefGoogle Scholar
  45. 45.
    Fonsati M, Zucchi F, Trabanelli G (1998) Electrochim Acta 44(2, 3):311CrossRefGoogle Scholar
  46. 46.
    Kern P, Landolt D (2001) J Electrochem Soc 148(6):B228CrossRefGoogle Scholar
  47. 47.
    Szocs E, Vastag Gy, Shaban A, Kalman E (2005) Corros Sci 47(4):893CrossRefGoogle Scholar
  48. 48.
    Chmielova M, Seidlerova J, Weiss Z (2003) Corros Sci 45(5):883CrossRefGoogle Scholar
  49. 49.
    Kear G, Barker BD, Walsh FC (2004) Corros Sci 46(1):109CrossRefGoogle Scholar
  50. 50.
    Davies PR, Edwards D, Richards D (2004) Surf Sci 573(2):284CrossRefGoogle Scholar
  51. 51.
    Warren MR, Madden JD (2006) Synthetic Met 156(9, 10):724CrossRefGoogle Scholar
  52. 52.
    Al Kharafi FM, Ateya BG (2002) J Electrochem Soc 149(6):B206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • F. M. Al Kharafi
    • 1
  • A. M. Abdullah
    • 1
  • B. G. Ateya
    • 1
  1. 1.Chemistry Department, Faculty of ScienceUniversity of KuwaitSafatKuwait

Personalised recommendations