Journal of Applied Electrochemistry

, Volume 37, Issue 10, pp 1171–1176 | Cite as

Direct reduction of As(V) physically attached to a graphite electrode mediated by Fe(III)

  • G. Cepriá
  • S. Hamida
  • F. Laborda
  • J. R. Castillo
Original Paper


As(V) is electrochemically reduced on the surface of a carbonaceous electrode in the presence of hematite and hydrochloric acid 1 M. The influence of other iron oxides (goethite and limonite) was also tested, although they did not provided better results. The potential required to achieve the reduction must be lower than −0.3 V. The anodic voltammograms exhibit a peak at 0.14 V which corresponds to the oxidation of the As° previously generated during the pre-treatment step (−1 V, 5 s) to As(III). Fe(II) generated during the pre-treatment step plays a relevant role in the final reduction to As° which is subsequently reoxidized to As(III) in the anodic scan. This has been applied to the direct detection of 5 mg kg−1 of arsenic in a solid sample of compost with high concentration of iron oxides by square wave voltammetry.


Arsenic Reduction Iron oxides Electrochemistry Voltammetry 



This work was supported by the SGPCCC of the Spanish Ministry of the Environment.


  1. 1.
    Wei Z, Somasundaran P (2004) J Appl Electrochem 34:241CrossRefGoogle Scholar
  2. 2.
    Kao WH, Kuwana T (1984) J Electroanal Chem 169:167CrossRefGoogle Scholar
  3. 3.
    Eguiarte I, Alonso KM, Jiménez RM (1996) Analyst 121:1835CrossRefGoogle Scholar
  4. 4.
    Greulach U, Henze G (1995) Anal Chim Acta 306:217CrossRefGoogle Scholar
  5. 5.
    Li H, Smart RB (1996) Anal Chim Acta 325:25CrossRefGoogle Scholar
  6. 6.
    He Y, Zheng Y, Locke DC (2007) Microchem J 85:265CrossRefGoogle Scholar
  7. 7.
    Forsberg G, O’lauglin JW, Megargle RG, Koirtyohann SR (1975) Anal Chem 47:1586CrossRefGoogle Scholar
  8. 8.
    Feeney R, Kounaves SP (2002) Talanta 58:23CrossRefGoogle Scholar
  9. 9.
    Huang H, Dasgupta PK (1999) Anal Chim Acta 380:27CrossRefGoogle Scholar
  10. 10.
    Huiliang H, Jagner D, Renman L (1988) Anal Chim Acta 207:37CrossRefGoogle Scholar
  11. 11.
    Gründler P, Flechsig GU (1998) Electrochim Acta 433:451Google Scholar
  12. 12.
    Schickling C, Yang JF, Broekaert JAC (1996) J Anal At Spectrom 11:739CrossRefGoogle Scholar
  13. 13.
    Bose P, Sharma A (2002) Water Res 36:4916CrossRefGoogle Scholar
  14. 14.
    Bauer M, Blodau C (2006) Sci Total Environ 354:179CrossRefGoogle Scholar
  15. 15.
    Lin H, Wang MC, Li GC (2004) Chemosphere 46:1105CrossRefGoogle Scholar
  16. 16.
    Melitas N, Conklin M, Farrel J (2002) Environ Sci Technol 36:3188CrossRefGoogle Scholar
  17. 17.
    Locatelli C, Torsi G (2001) J Electroanal Chem 509:80CrossRefGoogle Scholar
  18. 18.
    Locatelli C, Torsi G (2000) Microchem J 65: 293CrossRefGoogle Scholar
  19. 19.
    Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  20. 20.
    Cepriá G, Alexa N, Cordos E, Castillo JR (2005) Talanta 66:875CrossRefGoogle Scholar
  21. 21.
    Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory VCH. WeinheimGoogle Scholar
  22. 22.
    Grygar T (1995) Collect Czech Chem Commun 60:1261CrossRefGoogle Scholar
  23. 23.
    Su C, Puls R (2001) Environ Sci Technol 35:1487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • G. Cepriá
    • 1
  • S. Hamida
    • 1
  • F. Laborda
    • 1
  • J. R. Castillo
    • 1
  1. 1.Analytical Chemistry Department, Faculty of SciencesUniversity of ZaragozaZaragozaSpain

Personalised recommendations