Advertisement

Journal of Applied Electrochemistry

, Volume 37, Issue 11, pp 1383–1387 | Cite as

Hydrogen fuel cells for cars and buses

  • L. J. J. Janssen
Original Paper

Abstract

The use of hydrogen fuel cells for cars is strongly promoted by the governments of many countries and by international organizations like the European Community. The electrochemical behaviour of the most promising fuel cell (polymer electrolyte membrane fuel cell, PEMFC) is critically discussed, based on results presented in the literature. Moreover, when some non- electrochemical aspects are taken into consideration, it is concluded that the prospects are not too bright. Moreover, the hydrogen-rich gas generated from small organics contains CO2 and a small amount of CO, its use easily leads to poisoning of the platinum gas diffusion anode in the fuel cell. Also the hydrogen storage problems are still not solved.

Keywords

Hydrogen Oxygen Fuel cell Cars Poisoning and storage 

References

  1. 1.
    Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, Weinheim Google Scholar
  2. 2.
    Vetter KJ (1961) Elektrochemische kinetik. Springer Verlag, Berlin Google Scholar
  3. 3.
    Breiter MW (1969) Electrochemical processes in fuel cells. Springer Verlag, Berlin Google Scholar
  4. 4.
    Appleby AJ, Chemla M, Kita H, Bronoël G (1982) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol IX, part A. Marcel Dekker, New York, 384Google Scholar
  5. 5.
    Volmer M, Wick H (1955) Z Physik Chem 172A:429Google Scholar
  6. 6.
    Vogel W, Lundquist J, Ross P, Stonehart P (1975) Electrochim Acta 20:79CrossRefGoogle Scholar
  7. 7.
    Stonehart P, Ross PN (1976) Electrochem Acta 21:441CrossRefGoogle Scholar
  8. 8.
    Vermeijlen JJTT, Janssen LJJ, Visser GJ (1997) Electrochim Acta 27:497Google Scholar
  9. 9.
    King JM, Kunz HR (2003) In: Vielstich W, Lamm A, Gassteiger HA (eds) Handbook of fuel cells, vol 1: Fundamentals and survey of systems. Wiley, England, chapter 16, 287Google Scholar
  10. 10.
    Vermeijlen JJTT (1994) Behavior of hydrogen gas diffusion electrodes, dissertation. Technical University Eindhoven, EindhovenGoogle Scholar
  11. 11.
    Appleby AJ, Chemla M, Kita H, Bronoël G (1982) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements’, vol IX, part A. Marcel Dekker, New York, 509Google Scholar
  12. 12.
    Oetjen H-F, Schmidt VM, Stimmung U, Trila F (1996) J Electrochem Soc 143:3838CrossRefGoogle Scholar
  13. 13.
    de Bruijn FA, Papageorgopoulos DC, Sitters EF, Janssen GJM (2002) J Power Sources 110:117CrossRefGoogle Scholar
  14. 14.
    JJ Baschuk, Xiango Li (2003) ‘Lecture modeling carbon monoxide poisoning and oxygen (air) bleeding in PEM fuel cells’, First Intl exergy, energy and environment symposium. Izmir, Turkey 13–17 July Google Scholar
  15. 15.
    Damjanovic A, Brusic V (1967) Electrochim Acta 12:615CrossRefGoogle Scholar
  16. 16.
    Parthasarathy A, Srinivasan S, Appleby AJ (1992) J Electroanal Chem 339:101CrossRefGoogle Scholar
  17. 17.
    Jen TC, Jan TZ, Chen QH (2005) In: Sundén B, Faghir M (eds) ‘Transport phenomena in fuel cells’. Witpress, Southampton, chapter 6, 215Google Scholar
  18. 18.
    Bockris JO’M, Srinivasan S (1969) Fuel cells: Their electrochemistry. McGraw-Hill, New York, chapter 9, p 469Google Scholar
  19. 19.
    Willson J, Heitbaum J (1986) Electrochim Acta 31:943CrossRefGoogle Scholar
  20. 20.
    Wendt H, Kreysa G (1999) Electrochemical engineering. Springer-Verlag, BerlinGoogle Scholar
  21. 21.
    Paulus UA, Draschil C, Schmidt TJ, Stamenhovic V, Markovic NM, PN Ross, Scherer GG, Wokaun A (2002) Fuel cell seminar. Palm Springs MeetingGoogle Scholar
  22. 22.
    Doyle M and Rajendran G (2003) In: Vielstich W, Lamm A Gasteiger HA (eds) Handbook of fuel cells, vol 3: Fundamentals technology and applications. Wiley, England, chapter 30, 351Google Scholar
  23. 23.
    Mallant RKAM (2002) Fuel cell seminar. Palm Springs Meeting Google Scholar
  24. 24.
    Rand DAJ, Woods R, Dell RM (1998) Batteries for electric vehicles. Research Studies Press Ltd, Taunton, Wiley, England, 99Google Scholar
  25. 25.
    Linden D (1984) Handbook of batteries and fuel cells. Mc Graw-Hill Book Company, New York, 26Google Scholar
  26. 26.
    Delsman ER (2005) Microstructured reactors for a portable hydrogen production unit, dissertation. Technical University Eindhoven, EindhovenGoogle Scholar
  27. 27.
    Warn JRW, Peters APH (1996) ‘Concise chemical thermodynamics’, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  28. 28.
    de Bruijn FA, Papageorgopoulos DC, Sitters EF, Janssen GJM (2002) J Power Sources 110:117CrossRefGoogle Scholar
  29. 29.
    de Bruijn FA, Mallant RKAM (2007) NPT procestechnologie 103(2):8Google Scholar
  30. 30.
    Funck R (2003) In: Vielstich W, Lamm A, Gasteiner HA (eds) ‘Handbook of fuel cells’, vol 3: Fuel cell technology and applications. John Wiley and Sons Ltd, chapter 6, 83Google Scholar
  31. 31.
    Sandroch G (2003) In: Vielstich W, Lamm A, Gasteiner HA (eds) ‘Handbook of fuel cells’ vol 3: Fuel cell technology and applications. John Wiley and Sons Ltd, chapter 8,101Google Scholar
  32. 32.
    TNO report (1975) Waterstof als energiedrager, toekomstige mogelijkheden in Nederland 203Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Faculty of Chemical TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.ETECONuenenThe Netherlands

Personalised recommendations