Journal of Applied Electrochemistry

, Volume 37, Issue 8, pp 887–892 | Cite as

Influence of current density on oxygen transfer in an electroflotation cell

Original Paper


The objective of this work is to study the transfer of oxygen from gas to liquid phase in an electroflotation cell. The measurements were performed in a laboratory scale cell using insoluble electrodes, titanium coated with ruthenium oxide as anode and stainless steel as cathode. The volumetric mass transfer coefficient K L a, was characterized for clean tap water as liquid phase for different values of current density (J). The global coefficient of mass transfer based on the liquid film, K L , and the specific interfacial area, a, were characterized. A model which relates K L a to current density was established. Different evaluation criteria of oxygen transfer in electroflotation process were determined and compared with other aeration process.


Current density Electroflotation Oxygen transfer 



specific interfacial area (m2 m−3)


gas-liquid interface area (m2)


oxygen concentration in the liquid (g m−3)


oxygen equilibrium concentration in the liquid (g m−3)


initial dissolved oxygen concentration (g m−3)


current density (A m−2)


bubble diameter (μm)


Faraday constant (C mol−1)


static height of the liquid bed (m)


total height of the gas – liquid bed (m)


global coefficient of mass transfer based on liquid film (m s−1)


volumetric mass transfer coefficient (s−1)

\({m_{O_2 }}\)

oxygen flow rate (g s−1)

\({M_{O_2 }}\)

oxygen molar mass (g mol−1)


oxygenation capacity (g m−3 h−1)


oxygenation efficiency (%)


surface of the electrodes (m2)


temperature of the liquid phase (°C)


aerated liquid volume (m3)

Greek symbols


gas hold-up (%)


empirical coefficient in Eq. (7)


  1. 1.
    Elmore FE (1905) Br Patent (13):578Google Scholar
  2. 2.
    Raju GB (1984) Trans Indian Inst Met 37(1):59Google Scholar
  3. 3.
    Chen G (2004) Sep Purif Technol 38:11CrossRefGoogle Scholar
  4. 4.
    Mostefa NM, Tir M (2004) Desalination 161:115CrossRefGoogle Scholar
  5. 5.
    Ge J, Qu J, Lei P, Liu H (2004) Sep Purif Technol 36:33CrossRefGoogle Scholar
  6. 6.
    Murugananthan M, Raju GB, Prabhakar S (2004) Sep Purif Technol 40:69CrossRefGoogle Scholar
  7. 7.
    Ben Mansour L, Ben Abdou Y, Gabsi S (2001) Water Waste Environ Res 2:51Google Scholar
  8. 8.
    Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) Chem Eng Process 40:97CrossRefGoogle Scholar
  9. 9.
    Linek V, Moucha T, Kordac M (2005) Chem Eng Process 44:353CrossRefGoogle Scholar
  10. 10.
    Deront M, Samb FM, Adler N, Péringer P (1998) Chem Eng Sci 53:1321CrossRefGoogle Scholar
  11. 11.
    Reiss LP (1967) I & EC Proc Des Dev 6:486CrossRefGoogle Scholar
  12. 12.
    Alexander BF, Shah YT (1976) Can J Chem Eng 54:556CrossRefGoogle Scholar
  13. 13.
    Lee LL, Tsao GT (1972) Chem Eng Sci 27:1601CrossRefGoogle Scholar
  14. 14.
    Filson GW, Walton JH (1932) J Phys Chem 36:740CrossRefGoogle Scholar
  15. 15.
    Goto S, Mabuchi K (1984) Can J Chem Eng 62:865CrossRefGoogle Scholar
  16. 16.
    Gchern JM, Chou SR, Shang CS (2001) Wat Res 35:3041CrossRefGoogle Scholar
  17. 17.
    Linek V, Moucha T, Dousova M, Sinkule J (1994) Biotechnol Bioeng 43:477CrossRefGoogle Scholar
  18. 18.
    Fujie K, Hu HY, Ikeda Y, Urano K (1992) Chem Eng Sci 47:3745CrossRefGoogle Scholar
  19. 19.
    Lewis WK, Whitman WG (1924) Ind Eng Chem 16(12):1215CrossRefGoogle Scholar
  20. 20.
    ASCE (1984) American Society of Civil EngineersGoogle Scholar
  21. 21.
    Chen X, Chen G, Yue PL (2002) Environ Sci Technol 36(4):778CrossRefGoogle Scholar
  22. 22.
    Hébrard G, Bastoul D, Roustan M (1996) Trans I Chem E 74:406Google Scholar
  23. 23.
    Abrardi V, Rovero G, Sicardi S, Baldi G, Conti R (1990) Trans Inst Chem Eng 68:516Google Scholar
  24. 24.
    Chiampo F, Guglielmetti R, Manna R, Conti R (1991) Seventh European Conference on Mixing. Brugge, BelgiumGoogle Scholar
  25. 25.
    Shah YT, Deckwer WD, Kelkar BG, Godbole SP (1982) A I Ch E J 28:353Google Scholar
  26. 26.
    Albal RS, Shah YT, Schumpe A (1983) Chem Eng J Biochem Eng J 27(2):61Google Scholar
  27. 27.
    Deimling A, Karandikar BM, Shah YT, Carr NL (1984) Chem Eng J Biochem Eng J 29(3):127Google Scholar
  28. 28.
    Edeline F (1984) L’épuration physico-chimique d es eauxthéories et technologie (4)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Sciences Faculty of SfaxLaboratory of Water – Environment and EnergySfaxTunisia

Personalised recommendations