Journal of Applied Electrochemistry

, Volume 37, Issue 8, pp 887–892 | Cite as

Influence of current density on oxygen transfer in an electroflotation cell

  • L. Ben Mansour
  • K. Kolsi
  • I. Ksentini
Original Paper


The objective of this work is to study the transfer of oxygen from gas to liquid phase in an electroflotation cell. The measurements were performed in a laboratory scale cell using insoluble electrodes, titanium coated with ruthenium oxide as anode and stainless steel as cathode. The volumetric mass transfer coefficient K L a, was characterized for clean tap water as liquid phase for different values of current density (J). The global coefficient of mass transfer based on the liquid film, K L , and the specific interfacial area, a, were characterized. A model which relates K L a to current density was established. Different evaluation criteria of oxygen transfer in electroflotation process were determined and compared with other aeration process.


Current density Electroflotation Oxygen transfer 



specific interfacial area (m2 m−3)


gas-liquid interface area (m2)


oxygen concentration in the liquid (g m−3)


oxygen equilibrium concentration in the liquid (g m−3)


initial dissolved oxygen concentration (g m−3)


current density (A m−2)


bubble diameter (μm)


Faraday constant (C mol−1)


static height of the liquid bed (m)


total height of the gas – liquid bed (m)


global coefficient of mass transfer based on liquid film (m s−1)


volumetric mass transfer coefficient (s−1)

\({m_{O_2 }}\)

oxygen flow rate (g s−1)

\({M_{O_2 }}\)

oxygen molar mass (g mol−1)


oxygenation capacity (g m−3 h−1)


oxygenation efficiency (%)


surface of the electrodes (m2)


temperature of the liquid phase (°C)


aerated liquid volume (m3)

Greek symbols


gas hold-up (%)


empirical coefficient in Eq. (7)


  1. 1.
    Elmore FE (1905) Br Patent (13):578Google Scholar
  2. 2.
    Raju GB (1984) Trans Indian Inst Met 37(1):59Google Scholar
  3. 3.
    Chen G (2004) Sep Purif Technol 38:11CrossRefGoogle Scholar
  4. 4.
    Mostefa NM, Tir M (2004) Desalination 161:115CrossRefGoogle Scholar
  5. 5.
    Ge J, Qu J, Lei P, Liu H (2004) Sep Purif Technol 36:33CrossRefGoogle Scholar
  6. 6.
    Murugananthan M, Raju GB, Prabhakar S (2004) Sep Purif Technol 40:69CrossRefGoogle Scholar
  7. 7.
    Ben Mansour L, Ben Abdou Y, Gabsi S (2001) Water Waste Environ Res 2:51Google Scholar
  8. 8.
    Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) Chem Eng Process 40:97CrossRefGoogle Scholar
  9. 9.
    Linek V, Moucha T, Kordac M (2005) Chem Eng Process 44:353CrossRefGoogle Scholar
  10. 10.
    Deront M, Samb FM, Adler N, Péringer P (1998) Chem Eng Sci 53:1321CrossRefGoogle Scholar
  11. 11.
    Reiss LP (1967) I & EC Proc Des Dev 6:486CrossRefGoogle Scholar
  12. 12.
    Alexander BF, Shah YT (1976) Can J Chem Eng 54:556CrossRefGoogle Scholar
  13. 13.
    Lee LL, Tsao GT (1972) Chem Eng Sci 27:1601CrossRefGoogle Scholar
  14. 14.
    Filson GW, Walton JH (1932) J Phys Chem 36:740CrossRefGoogle Scholar
  15. 15.
    Goto S, Mabuchi K (1984) Can J Chem Eng 62:865CrossRefGoogle Scholar
  16. 16.
    Gchern JM, Chou SR, Shang CS (2001) Wat Res 35:3041CrossRefGoogle Scholar
  17. 17.
    Linek V, Moucha T, Dousova M, Sinkule J (1994) Biotechnol Bioeng 43:477CrossRefGoogle Scholar
  18. 18.
    Fujie K, Hu HY, Ikeda Y, Urano K (1992) Chem Eng Sci 47:3745CrossRefGoogle Scholar
  19. 19.
    Lewis WK, Whitman WG (1924) Ind Eng Chem 16(12):1215CrossRefGoogle Scholar
  20. 20.
    ASCE (1984) American Society of Civil EngineersGoogle Scholar
  21. 21.
    Chen X, Chen G, Yue PL (2002) Environ Sci Technol 36(4):778CrossRefGoogle Scholar
  22. 22.
    Hébrard G, Bastoul D, Roustan M (1996) Trans I Chem E 74:406Google Scholar
  23. 23.
    Abrardi V, Rovero G, Sicardi S, Baldi G, Conti R (1990) Trans Inst Chem Eng 68:516Google Scholar
  24. 24.
    Chiampo F, Guglielmetti R, Manna R, Conti R (1991) Seventh European Conference on Mixing. Brugge, BelgiumGoogle Scholar
  25. 25.
    Shah YT, Deckwer WD, Kelkar BG, Godbole SP (1982) A I Ch E J 28:353Google Scholar
  26. 26.
    Albal RS, Shah YT, Schumpe A (1983) Chem Eng J Biochem Eng J 27(2):61Google Scholar
  27. 27.
    Deimling A, Karandikar BM, Shah YT, Carr NL (1984) Chem Eng J Biochem Eng J 29(3):127Google Scholar
  28. 28.
    Edeline F (1984) L’épuration physico-chimique d es eauxthéories et technologie (4)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Sciences Faculty of SfaxLaboratory of Water – Environment and EnergySfaxTunisia

Personalised recommendations