Journal of Applied Electrochemistry

, Volume 37, Issue 6, pp 669–674 | Cite as

Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature

Original Paper


In the electrodeposition of cobalt in chloride electrolytes the evolution of hydrogen is a parasitic reaction. On a rotating platinum disc electrode the current efficiency was calculated as the charge used for anodic dissolution of cobalt at a potential where no other reactions were taking place, divided by the total cathodic charge used for cobalt deposition. The results show that the current efficiency could be measured accurately in this way. In part I the current efficiency and deposition potential are studied as a function of current density and pH. The results show an increase in current efficiency with increasing current density, pH and temperature. The results also indicate a change in the reaction mechanism for electrodeposition when the pH is changed.


Cobalt Current-efficiency Electrodeposition Overpotential 



Falconbridge Nikkelverk A/S in Norway and the Research Council of Norway (NFR) are acknowledged for financial support of this project.


  1. 1.
    Kerfoot DGE, Weir DR (1988) In: Tyroler GP, Landolt CA (eds) Extractive metallurgy of Nickel and Cobalt. The Metallurgical Society, Warrendale PA, pp 241–267Google Scholar
  2. 2.
    Fujimori M, Ono N, Tamura N, Kohga T (1982) In: Parker PD (ed) Chloride Electrometallurgy. The Metallurgical Society, Warrendale PA, pp 155–166Google Scholar
  3. 3.
    Stensholt EO, Zachariasen H, Lund JH (1986) Trans Inst Min Metall C95:C10Google Scholar
  4. 4.
    Grøntoft F (1980) Canadian Patent no. 1074251Google Scholar
  5. 5.
    Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK (eds) (1973) Selected values of the properties of binary alloys. American Society for Metals, Metals Park, Ohio, pp 678–682Google Scholar
  6. 6.
    Meyer RJ (ed) Gmelins Handbuch der Anorganische Chemie, Co, Teil A. Verlag Chemie GmbH, Berlin, achte v¨ollige neu bearbeitete Auflag (1932)Google Scholar
  7. 7.
    Findlay T, Aylward G (1994) SI chemical data, 3rd edn. John Wiley & Sons, National Library of AustraliaGoogle Scholar
  8. 8.
    Scoyer J, Winand R (1977) Surf Technol 5:169CrossRefGoogle Scholar
  9. 9.
    Louis P, Dille J, Hunga L, Shungu T (1988) In: Tyroler GP, Landolt CA (eds) Extractive metallurgy of Nickel and Cobalt. The Metallurgical Society, Warrendale PA, pp 505–515Google Scholar
  10. 10.
    Dille J, Charlier J, Winand R (1997) J Mater Sci 32:2637CrossRefGoogle Scholar
  11. 11.
    Lenthall KC, Bryson AW (1997) In: Dreisinger DB (ed) Aqueous electrotechnology: progress in theory and practice. The Minerals, Metals & Materials Society, Warrendale PA, pp 305–320Google Scholar
  12. 12.
    Das SC, Subbaiah T (1984) Hydrometallurgy 12:317CrossRefGoogle Scholar
  13. 13.
    Jeffrey MI, Choo WL, Breuer PL (2000) Miner Eng 13(12):1231CrossRefGoogle Scholar
  14. 14.
    Feneau C, Breckpot R (1969) ATB: Metallurgie IX 3:115Google Scholar
  15. 15.
    Hausler KEZ (1962) Electrochem 66(2):177Google Scholar
  16. 16.
    Hausler KE (1967) Ber Bunsenges Phys Chem 71:620Google Scholar
  17. 17.
    Cui CQ, Jiang SP, Tseung ACC (1990) J Electrochem Soc 137(11):3418CrossRefGoogle Scholar
  18. 18.
    Bolzan JA, Arvìa A (1962) J Electrochim Acta 7:589CrossRefGoogle Scholar
  19. 19.
    Smith RM, Martell AE (1976) Critical stability constants. Plenum Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • O. E. Kongstein
    • 1
  • G. M. Haarberg
    • 1
  • J. Thonstad
    • 1
  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations