Journal of Applied Electrochemistry

, Volume 37, Issue 5, pp 575–582 | Cite as

Electrodeposition of copper–magnetite magnetic composite films

  • A. Roldan
  • E. Gómez
  • S. Pané
  • E. Vallés
Original Paper


Electrodeposition was demonstrated to be useful for the preparation of copper–magnetite magnetic composites. An acidic bath was tested for the incorporation of nanometric magnetite (Fe3O4) particles into an electrodeposited copper matrix. Cationic surfactant (dodecyltrimethylammonium chloride—DTAC) was used to keep particles suspended in the electrolyte as well as to assist magnetite incorporation. The influence of several parameters (bath temperature, deposition technique, stirring regimes and deposition conditions) on composites composition was analysed. Low stirring rate, moderate temperature (15 °C) and an applied magnetic field provided a greater incorporation of magnetite. Field emission scanning electron microscopy revealed magnetite distribution through the deposit thickness. Electrodeposited composites showed ferromagnetic behaviour. Magnetic force microscopy showed a magnetic response for the composites.


Composite Electrodeposition Magnetic properties Copper Magnetite 



The authors thank Josep M. Montero-Moreno, the Serveis Cientificotècnics (Universitat de Barcelona), and the Servei de Magnetoquímica (Universitat de Barcelona) for the use of their equipment. This paper was supported by contract MAT 2003-09483-C02-01 from the Comisión Interministerial de Ciencia y Tecnología (CICYT).


  1. 1.
    Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Scr Mater 54:1175CrossRefGoogle Scholar
  2. 2.
    Suryanarayana BC (2005) Adv Eng Mater 7:983CrossRefGoogle Scholar
  3. 3.
    Curulli A, Valentini F, Padeletti G, Viticoli M, Caschera D, Palleschi G (2005) Sens Actuators B 111–112:441CrossRefGoogle Scholar
  4. 4.
    Vaseashta A, Dimova-Malinovska D (2005) Sci Technol Adv Mat 6:312CrossRefGoogle Scholar
  5. 5.
    Avramova I, Stefanov P, Nicolova D, Stoychev D, Marinova Ts (2005) Comp Sci Technol 65:1663CrossRefGoogle Scholar
  6. 6.
    Pardavi-Horvath M, Takacs L (1993) J Appl Phys 73:6958CrossRefGoogle Scholar
  7. 7.
    Bader SD (2002) Scr Mater 47:527CrossRefGoogle Scholar
  8. 8.
    Dobrzanski LA, Drak M (2004) J Mater Process Technol 157–158:650CrossRefGoogle Scholar
  9. 9.
    Arruebo M, Galan M, Navascues N, Carlos T, Marquina C, Ibarra MR, Santamaria S, (2006) Chem Mater 18:1911CrossRefGoogle Scholar
  10. 10.
    Pardavi-Horvath M, Takacs T (1995) Scr Metal Mater 33:1731CrossRefGoogle Scholar
  11. 11.
    Caizer C, Popovici M, Savii C (2003) Acta Mater 51:3607CrossRefGoogle Scholar
  12. 12.
    Mandal K, Chakraverly S, Pan Mandal S, Agudo P, Pal M, Chakravorty D (2002) J Appl Phys 92:501CrossRefGoogle Scholar
  13. 13.
    Hayashi N, Toriyama T, Wakabayashi H, Sakamoto I, Okada T, Kuriyama K (2002) Surf Coat Technol 158:193CrossRefGoogle Scholar
  14. 14.
    Shull RD, Atzmony U, Shapiro AJ, Swartendruber LJ, Bennett LH, Green WJ, Moorjani K (1998) J Appl Phys 63:4261CrossRefGoogle Scholar
  15. 15.
    Guan S, Nelson BJ, Vollmers K (2004) J Electrochem Soc 151:C545CrossRefGoogle Scholar
  16. 16.
    Guan S, Nelson BJ (2005) Sens Actuators A 118:307CrossRefGoogle Scholar
  17. 17.
    Guan S, Nelson BJ (2005) J Magn Magn Mater 292:49CrossRefGoogle Scholar
  18. 18.
    Kim SK, Yoo HJ (1988) Surf Coat Technol 108–109:564Google Scholar
  19. 19.
    Pourroy G, Valles-Minguez A, Dintzer T, M. Richard-Plouet (2001) J Alloys Compd 327:267CrossRefGoogle Scholar
  20. 20.
    Mugnier E, Pasquet I, Barnabé A, Presmanes L, Bonningue C, Tailhades P (2005) Thin Solid Films 493:49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Electrodep, Departament de Química Física and Institut de Nanociència i NanotecnologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations