Journal of Applied Electrochemistry

, Volume 37, Issue 5, pp 567–573 | Cite as

Synthesis and electrochemical evaluation of carbon coated Cu6Sn5 alloy-graphite composite lithium battery anodes

Original Paper


With a view to minimize the unavoidable large volume changes of tin based Cu6Sn5 alloy anodes, a composite Cu6Sn5/graphite anode has been prepared via. a mechanical alloying process and subsequently coated with disordered carbon through pyrolysis of PVC. Phase pure products with better crystallinity and preferred surface morphology were obtained, as evident from PXRD and SEM respectively. Upon electrochemical charge-discharge, the intermetallic Cu6Sn5 alloy-graphite composite anode was found to exhibit an enhanced initial discharge capacity of 564 mAh g−1 followed by significant capacity fade (>20%) especially after five cycles. On the other hand, carbon coated Cu6Sn5 alloy-graphite composite demonstrated promising electrochemical properties such as steady reversible capacity (∼200 mAh g−1), excellent cycle performance (<5% capacity fade) and high coulombic efficiency (∼98%) via. significant reduction of volume changes. The carbon coating offers buffering and conductive actions on the anode active material and thereby enhances the electrochemical behavior of carbon coated Cu6Sn5 alloy/graphite composite anode material.


Carbon coated Cu6Sn5 alloy-graphite composite anode Lithium battery Specific capacity Coulombic efficiency 


  1. 1.
    Claye A, Fisher JE (1999) Electrochim Acta 45:107CrossRefGoogle Scholar
  2. 2.
    Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) Science 264:556CrossRefGoogle Scholar
  3. 3.
    Dahn JR, Zheng T, Liu Y, Xue JS (1995) Science 270:590CrossRefGoogle Scholar
  4. 4.
    Zheng T, Liu Y, Fuller EW, Tseng S, Von Sacken U, Dahn JR (1995) J Electrochem Soc 142:2581CrossRefGoogle Scholar
  5. 5.
    Han Y-S, Yu J-S, Park G-S, Lee J-Y (1999) J Electrochem Soc 146:3999CrossRefGoogle Scholar
  6. 6.
    Cheng X-Q, Shi P-F (2005) J Alloys Compd 391:241CrossRefGoogle Scholar
  7. 7.
    Reddy MV, Wannek C, Pecquenard B (2003) J Power Sources 119–121:101CrossRefGoogle Scholar
  8. 8.
    Choi SH, Kim JS, Yoon YS (2004) Electrochim Acta 50:545Google Scholar
  9. 9.
    Idota Y, Kubota T, Matsufuji A, Miyasaka T (1997) Science 276:1395CrossRefGoogle Scholar
  10. 10.
    Nishijma M, Takeda Y, Imanishi N, Yamamota O (1994) J Solid State Chem 113:205CrossRefGoogle Scholar
  11. 11.
    Satya Kishore MVVM, Varadaraju UV, Raveau B (2004) J Solid State Chem 77:3981CrossRefGoogle Scholar
  12. 12.
    Kalaiselvi N, Doh C-H, Park C-W, Moon S-I, Yun M-S (2004) Electrochem Commun 6:1110CrossRefGoogle Scholar
  13. 13.
    Son JT (2004) Electrochem. Commun 6:990CrossRefGoogle Scholar
  14. 14.
    Chu Y-Q, Fu Z-W, Qin Q-Z (2004) Electrochim Acta 49:4915CrossRefGoogle Scholar
  15. 15.
    Yang X, Wang X, Zhang Z (2005) J Crystal Growth 277:463Google Scholar
  16. 16.
    Alcántara R, Jaraba M, Lavela P, Tirado JL, Jumas JC, Olivier-Fourcade J (2003) Electrochem Commun 5:16CrossRefGoogle Scholar
  17. 17.
    NuLi Y-N, Qin Q-Z (2005) J Power Sources 142:292CrossRefGoogle Scholar
  18. 18.
    NuLi Y-N, Chu Y-Q, Qin Q-Z (2004) J Electrochem Soc 151:A1077CrossRefGoogle Scholar
  19. 19.
    Sharma N, Shaju KM, Subba Rao GV, Chowdari BVR (2003) J Power Sources 124:204CrossRefGoogle Scholar
  20. 20.
    Ahn H-J, Choi H-C, Park K-W, Kim S-B, Sung Y-E (2004) J Phys Chem B 108:9815CrossRefGoogle Scholar
  21. 21.
    Fan J, Wang T, Fu C, Tu B, Jiang Z, Zhao D (2004) Adv Mater 16:1432CrossRefGoogle Scholar
  22. 22.
    Wang Y, Lee JY, Chen B-H (2004) J Electrochem Soc 151:A563CrossRefGoogle Scholar
  23. 23.
    Mao O, Turner RL, Countney IA, Fredericksen BD, Buckett MI, Krause LJ, Dahn JR (1999) Electrochem Solid State Lett 2:3CrossRefGoogle Scholar
  24. 24.
    Idota Y, Kubota T, Matsufuji A, Mackawa Y, Miyasaka T (1997) Science 276:1395CrossRefGoogle Scholar
  25. 25.
    Wang J, Raistrick ID, Huggins RA (1986) J Electrochem Soc 133:457CrossRefGoogle Scholar
  26. 26.
    Besenhard JO, Komenda P, Paxinos A, Wudy E, Josowicz M (1986) Solid State Ionics 18–19:823CrossRefGoogle Scholar
  27. 27.
    Besenhard JO, Hess M, Komenda P (1990) Solid State Ionics 40–41:525CrossRefGoogle Scholar
  28. 28.
    Besenhard JO, Yang J, Winter M (1997) J Power Sources 68:87CrossRefGoogle Scholar
  29. 29.
    Kepler KD, Vaughey JT, Thakeray MM (1999) J Power Sources 81–82:383CrossRefGoogle Scholar
  30. 30.
    Yang J, Winter M, Besenhard JO (1996) Solid State Ionics 90:281CrossRefGoogle Scholar
  31. 31.
    Wang GX, Ahn JH, Lindsay MJ, Sun L, Broadhurst DH, Dou SX, Liu HK (2001) J Power Sources 97–98:211CrossRefGoogle Scholar
  32. 32.
    Lee HY, Back JK, Jang SW, Lee SM, Hong ST, Lee KY, Kim MH (2001) J Power Sources 101:206CrossRefGoogle Scholar
  33. 33.
    Patel P, Kim IS, Maranchi J, Kumta P (2004) J Power Sources 135:273CrossRefGoogle Scholar
  34. 34.
    Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I (2002) J Power Sources 107:48CrossRefGoogle Scholar
  35. 35.
    Mabuchi A, Tokumilsu K, Fujimoto H, Kasch T (1995) J Electrochem Soc 142:1041CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Korea Electrotechnology Research InstituteChangwonSouth Korea

Personalised recommendations