Journal of Applied Electrochemistry

, Volume 37, Issue 4, pp 473–481 | Cite as

Response surface modeling and optimization to study the influence of deposition parameters on the electrodeposition of Cu–Zn alloys in citrate medium

  • F. B. A. Ferreira
  • F. L. G. Silva
  • A. S. Luna
  • D. C. B. Lago
  • L. F. Senna
Original Paper


Copper–zinc alloy coatings were deposited on mild steel substrates using sodium citrate electrolytes at room temperature and under direct current. For the bath composition studied, factorial design was used to verify the influence of deposition parameters, such as current density and mechanical stirring, on the cathodic efficiency, the contents of copper and zinc, and the amount of hydrogen evolution. Moreover, the four responses were simultaneously studied by using an optimization methodology. The results suggest that the optimum point for reaching good quality copper–zinc alloy deposits from the proposed citrate electrolytes are 29 A m−2 and 247 rpm for bath 3 and 13 A m−2 and 67 rpm for bath 4. Applying these conditions, a yellow-reddish coating was obtained from bath 3, while a bright red deposit was produced from bath 4.


Alloy electrodeposition Citrate electrolytes Copper–zinc alloys Desirability function Response surface methodology 



The authors thank FAPERJ and UERJ for financial support.


  1. 1.
    Vagramyan TA (1970) Electrodeposition of alloys: mechanism of simultaneous reaction of metal ions, Israel Program of Scientific Translation Ltd., JerusalemGoogle Scholar
  2. 2.
    Lainer VI (1970) Modern electrochemistry, Israel Program of Scientific Translation Ltd., JerusalemGoogle Scholar
  3. 3.
    Senna LF, Díaz SL, Sathler L (2003) J Appl Electrochem 33:1155CrossRefGoogle Scholar
  4. 4.
    Vagramyan TA, Solov’eva ZA (1961) Technology of electrodeposition. Robert Drapper Ltd., TeddingtonGoogle Scholar
  5. 5.
    Fujiwara Y, Enomoto H (2000) J Electrochem Soc 147(5):1840CrossRefGoogle Scholar
  6. 6.
    Page D, Roy S (1997) J Phy IV 7(C5):269Google Scholar
  7. 7.
    Krishnan RM, Muralidharan VS, Natarajan SR (1996) Bull Electrochem 12(5–6):274Google Scholar
  8. 8.
    Chassaing E, Vu Quang K, Wiart R (1986) J Appl Electrochem 16:591CrossRefGoogle Scholar
  9. 9.
    Uksene V, Survila A, Žukauskaitè A (1996) Rus J Electrochem 32 (8):960Google Scholar
  10. 10.
    Rode S, Henninot C, Vallières C, Matlosz M (2004) J Electrochem Soc 151(6):C405CrossRefGoogle Scholar
  11. 11.
    Gusev VN, Bezzubov AL, Kochman ÉD (1977) Sov Electrochem 13:111Google Scholar
  12. 12.
    Assaf FA, Elrehim SSA, Mohamed AS, Zaky AM (1995) Indian J Chem Technol 2(3):147Google Scholar
  13. 13.
    Senna LF (1991) Study of parameters for electroplating copper/zinc alloys from pyrophosphate electrolytes, M.Sc. thesis, Universidade Federal do Rio de JaneiroGoogle Scholar
  14. 14.
    Neto BB, Scarminio IS, Bruns RE (2001) Como Fazer Experimentos, Editora da UNICAMP, CampinasGoogle Scholar
  15. 15.
    Derringer G, Suich R (1980) J Qual Technol 12:214Google Scholar
  16. 16.
    Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry, Ellis Horwood Limited, LondonGoogle Scholar
  17. 17.
    Ishikawa M, Enomoto H, Matsuoka M, Iwakura C (1994) Electrochim Acta 39(14):2153CrossRefGoogle Scholar
  18. 18.
    Senna LF, Achete CA, Hirsch T, Mattos OR (2005) Surf Eng 21(2):144CrossRefGoogle Scholar
  19. 19.
    Senna LF, Díaz SL, Sathler L (2005) Mat Res 8(3):275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • F. B. A. Ferreira
    • 1
  • F. L. G. Silva
    • 1
  • A. S. Luna
    • 1
  • D. C. B. Lago
    • 1
  • L. F. Senna
    • 1
  1. 1.Departamento de Química Analítica, Instituto de QuímicaUniversidade do Estado do Rio de JaneiroMaracanaBrazil

Personalised recommendations