Advertisement

Journal of Applied Electrochemistry

, Volume 37, Issue 3, pp 353–358 | Cite as

Interlayer defect evolution in an organic coating system on steel under hydromechanical loading

  • A. Miszczyk
  • M. Szociński
  • K. Darowicki
Article

Abstract

Impedance measurements on the interlayer region in an organic coating system subjected to cyclic mechanical stress are presented. A novel impedance sensor capable of detecting contact imperfections between adjacent coating layers has been developed. A bilayered coating system designated to serve in a marine environment has been subjected to conditions simulating synergistic impact of fatigue effects due to repetitive mechanical stress and immersion in 3% NaCl aqueous solution. The results revealed the detrimental influence of cyclic stress and water ingress on the quality of the interlayer adhesion. The proposed method of interlayer impedance evaluation can be employed to interlayer defect monitoring in multi-coating systems.

Keywords

hydromechanical loading interface defects impedance spectroscopy organic coating 

References

  1. 1.
    S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998)Google Scholar
  2. 2.
    Perera D.Y. (1996) Prog. Org. Coat. 28:21CrossRefGoogle Scholar
  3. 3.
    Perera D.Y. (2002) Prog. Org. Coat. 44:55CrossRefGoogle Scholar
  4. 4.
    Miszczyk A., Darowicki K. (2003) Prog. Org. Coat. 46:49CrossRefGoogle Scholar
  5. 5.
    Nichols M.E., Gerlock J.L., Smith C.A., Darr C.A. (1999) Prog. Org. Coat. 35:153CrossRefGoogle Scholar
  6. 6.
    Bull S.J., Jones A.M. (1996) Surf. Coat. Technol. 78:173CrossRefGoogle Scholar
  7. 7.
    Zou R., Li L., Gui Z. (2001) Ceramic Int. 27:889CrossRefGoogle Scholar
  8. 8.
    ‘Impedance Spectroscopy: Theory, Experiment, and Applications’, E. Barsoukov and J. Ross Macdonald (eds), (New York, Wiley & Sons, 2005)Google Scholar
  9. 9.
    Amirudin A., Thierry D. (1995) Prog. Org. Coat. 26:1CrossRefGoogle Scholar
  10. 10.
    J.N. Murray, Prog. Org. Coat. 30 (1997) 225, 31 (1997) 255, 31 (1997) 375Google Scholar
  11. 11.
    Macdonald D.D., Sikora E., Engelhardt G. (1998) Electrochim. Acta 43:87CrossRefGoogle Scholar
  12. 12.
    Young W.C. (1989) Roark’s Formulas for Stress and Strain, 6th ed. New York, McGraw-HillGoogle Scholar
  13. 13.
    Corcoran E.M., (1969) J. Paint Technol. 41:635Google Scholar
  14. 14.
    Francis L.F., McCormick A.V., Vaessen D.M., Payne J.A. (2002) J. Mater. Sci. 37:4717CrossRefGoogle Scholar
  15. 15.
    Nichols M.E., Gerlock J.L., Smith C.A., Darr C.A. (1999) Prog. Org. Coat. 35:153CrossRefGoogle Scholar
  16. 16.
    Boukamp B.A. (1989) AC-Immitance Data Analysis System ‘Equivalent Circuit’. Twente University of Technology, Enschede, The NetherlandsGoogle Scholar
  17. 17.
    Miszczyk A., Schauer T. (2005) Prog. Org. Coat. 52:298CrossRefGoogle Scholar
  18. 18.
    deLevie R. (1967) in Delahay P. (ed) Advances in Electrochemistry and Electrochemical Engineering vol 6. New York, WileyGoogle Scholar
  19. 19.
    Macdonald D.D., (2006) Electrochim. Acta 51:1376CrossRefGoogle Scholar
  20. 20.
    Nichols M.E., Darr C.A., Smith C.A., Thouless M.D., Fischer E.R. (1998) Polym. Deg. Stab. 40:291CrossRefGoogle Scholar
  21. 21.
    Korzhenko A.A., Tabellout M., Emery J.R., (2000) Mater. Chem. Phys. 65:253CrossRefGoogle Scholar
  22. 22.
    Wapner K., Stratmann M., Grundmeier G. (2006) Electrochim. Acta 51:3303CrossRefGoogle Scholar
  23. 23.
    Leng A., Streckel H., Stratman M., (1999) Corros. Sci. 41:579CrossRefGoogle Scholar
  24. 24.
    Miszczyk A., Darowicki K., Schauer T. (2005) J. Solid State Electrochem. 9:909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Electrochemistry, Corrosion and Material Engineering, Faculty of ChemistryGdansk University of TechnologyGdanskPoland

Personalised recommendations