Journal of Applied Electrochemistry

, Volume 37, Issue 2, pp 283–289 | Cite as

Effects of some additives on the corrosion behaviour and preferred orientations of zinc obtained by continuous current deposition

  • M. Mouanga
  • L. Ricq
  • J. Douglade
  • P. Berçot


The effect of thiourea, urea and guanidin on zinc deposits obtained from chloride baths under continuous current conditions are described and discussed. The corrosion behaviour of the deposits was investigated in an aerated 3.5% NaCl solution; anodic polarization curves, polarization resistance (R p) measurements and weight-loss studies were performed. The corrosion resistance of zinc deposits improved in the presence of urea. The deposit morphology was analyzed using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) was used to determine the preferred crystallographic orientations of the deposits. The preferred crystallographic orientations of zinc deposits (112) do not change in the presence of urea and guanidin except for an increase in the peak intensity of the (112) plane. In the presence of thiourea, zinc deposits crystallise in two textures; (100) and (110). The influence of each additive and the difference between additives on the zinc deposits are also discussed.


zinc electrodeposition additives corrosion x-ray Diffraction scanning electron microscopy 



The authors thank Lindsay Myers for corrections to this paper.


  1. 1.
    L. Lacourcelle, ‘Traité de galvanotechnique’ (Galva-conseil, 1997) p. 234Google Scholar
  2. 2.
    Venkatachalam C.S., Rajagopalan S.R., Sastry M.V.C. (1981) Electrochim. Acta 26:1257CrossRefGoogle Scholar
  3. 3.
    Troquet M., Pegeiti J. (1982) Electrochim. Acta 27:197CrossRefGoogle Scholar
  4. 4.
    Fouda A.S., Elasklary A.H., Maadkeur L.H.M. (1984) J. Ind. Chem. Soc. 59:425Google Scholar
  5. 5.
    Witt C.A., Drzisga I., Kola W. (1985) Metall 39:828Google Scholar
  6. 6.
    Horner L., Pliefke E. (1986) Werkst. Korros. 37:457CrossRefGoogle Scholar
  7. 7.
    Ahmed A.I., Hakam S.A. (1989) Anti-corrosion 3:4Google Scholar
  8. 8.
    Wipperman K., Shultze J.W., Kessel R., Penninger J. (1991) Corros. Sci. 32:205CrossRefGoogle Scholar
  9. 9.
    Aal M.S.A., Ahmed Z.A., Hassan M.S. (1992) J. Appl. Electrochem. 22:1104CrossRefGoogle Scholar
  10. 10.
    Sherbini E.E.F., Wahaab S.M.A., Deyab M. (2005) Mater. Chem. Phys. 89:183CrossRefGoogle Scholar
  11. 11.
    M. Schlesinger and Paunovic M. ‘Modern electroplating’ (John Wiley and Sons, Inc., 2000) p. 151Google Scholar
  12. 12.
    Youssef K.M.S., Koch C.C., Fedkiw P.S. (2004) Corros. Sci. 46:51CrossRefGoogle Scholar
  13. 13.
    C. Rochaix, Electrochimie, thermodynamique-cinétique, Nathan (1996) p. 120Google Scholar
  14. 14.
    Muresan L., Oniciu L., Froment M., Maurin G. (1992), Electrochim. Acta 37:2249CrossRefGoogle Scholar
  15. 15.
    Fricoteaux P., Douglade J. (2002) J. Mater. Sci. Lett. 21:1485CrossRefGoogle Scholar
  16. 16.
    Kim S.H., Sohn H.J., Joo Y.C., Kim Y.W., Yim T.H., Lee H.Y., Kang T. (2005) Surf. Coat. Technol. 199:43CrossRefGoogle Scholar
  17. 17.
    Ramanauskas R., Quintana P., Maldonado L., Pomés R. and Canul M.A.P. (1997) Surf. Coat. Technol. 92:16CrossRefGoogle Scholar
  18. 18.
    Filho J.F.S., Lins V.F.C. (2006) Surf. Coat. Technol. 200:2892CrossRefGoogle Scholar
  19. 19.
    G. Trejo, R.O. Borges, Y. Meas, Plat. Surf. Finish. (June 2002) 84Google Scholar
  20. 20.
    Trejo G., Ruiz H., Borges R.O., Meas Y. (2001) J. Appl. Electrochem. 31:685CrossRefGoogle Scholar
  21. 21.
    A.R. Hernandez, M.T. Ramirez and I. Gonzalez, Anal. Chim. Acta 278 (1993) 321Google Scholar
  22. 22.
    Rojas A., Gonzalez I. (1986) Anal. Chim. Acta 187:279CrossRefGoogle Scholar
  23. 23.
    T.V. Venkatesha, J. Balachandra, S.M. Mayanna and R.P. Dambal, Plat. Surf. Finish. (June 1987) 77Google Scholar
  24. 24.
    F. Galvani and I.A. Carlos, Met. Finish. (February 1997) 70Google Scholar
  25. 25.
    L. Bonou, M. Eyraud, R. Denoyel and Y. Massiani, Electrochim. Acta 47 (2002) 4139Google Scholar
  26. 26.
    Lallemand F., Comte D., Ricq L., Renaux P., Pagetti J., Dieppedale C., Gaud P. (2004) Appl. Surf. Sci. 225:59CrossRefGoogle Scholar
  27. 27.
    Yan H., Dawnes J., Baden P.J., Harris S.J. (1996) J. Electrochem. Soc. 143:1577CrossRefGoogle Scholar
  28. 28.
    Gomes A., Pereira M.I.d.S. (2006) Electrochim. Acta 51:1342CrossRefGoogle Scholar
  29. 29.
    Reents B., Plieth W., Macagno V.A., Lacconi G.I. (1998) J. Electroanal. Chem. 453:121CrossRefGoogle Scholar
  30. 30.
    Qu Q., LI L., Bai W., Yan C., Cao C.N. (2005) Corros. Sci. 47:2832CrossRefGoogle Scholar
  31. 31.
    Boshkov N. (2003) Surf. Coat. Technol. 172:217CrossRefGoogle Scholar
  32. 32.
    Geary M., Breslin C.B. (1997) Corros. Sci. 39:1341CrossRefGoogle Scholar
  33. 33.
    Bajatc J.B., Stankovic V.B.M., Masimovic M.D., Drazic D.M., Zee S. (2002) Electrochim. Acta 47:4101CrossRefGoogle Scholar
  34. 34.
    Zhang X.G. (1996) ‘Corrosion and Electrochemistry of Zinc’ (Plenum Press, New-York and London) p. 171Google Scholar
  35. 35.
    Bajat J.B., Stankovic V.B.M. (2004) Prog. Org. Coat. 49:183CrossRefGoogle Scholar
  36. 36.
    Gravilla M., Millet J.P., Mazille H., Marchandise D., Cuntz J.M. (2000) Surf. Coat. Technol. 123:164CrossRefGoogle Scholar
  37. 37.
    Kumar A.S., Pandian C.S.R., Ayyapparaju J., Bapu G.N.K.R. (2001) Bull. Electrochem. 17:379Google Scholar
  38. 38.
    Park H., Szpunar J.A. (1998) Corros. Sci. 40:525CrossRefGoogle Scholar
  39. 39.
    Saber K., Koch C.C., Fedkiw P.S. (2003) Mater. Sci. Eng. A341:174CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratoire de Chimie de Matériaux et InterfacesUniversité de Franche-ComtéBesançon CedexFrance
  2. 2.D.T.I., E.A.3083Université de ReimsReims CedexFrance

Personalised recommendations