Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 12, pp 1427–1431 | Cite as

Improved electrochemical redox performance of 2,5-dimercapto-1,3,4-thiadiazole by poly(3-methoxythiophene)

  • Dong Shu
  • Jinghua Zhang
  • Chun He
  • Yuezhong Meng
  • Hongyu Chen
  • Yongsheng Zhang
  • Mianping Zheng
Article

Abstract

High electrocatalytic activity of an electropolymerized film of poly(3-methoxythiophene) (PMOT) is reported toward the redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) as a promising cathode material for the lithium ion battery. Cyclic voltammetry showed improved electrochemical performance of DMcT on PMOT-coated Pt electrode, indicating accelerated redox kinetics. Moreover, charge-discharge tests exhibited higher discharge capacity and slower capacity fading of the PMOT-doped DMcT composite cathode compared with pure DMcT.

Keywords

cathode material DMcT lithium ion battery poly(3-methoxythiophene) 

Notes

Acknowledgements

The authors wish to acknowledge financial support by the Scientific Research Foundation for Returned Overseas Chinese Scholars from the State Education Ministry, the China Postdoctoral Science Foundation (2004036514), and the State Key Scientific and Technological Project “Industrial Experimental Study of the Production of Lithium Carbonate Concentrate Extracted from Brine from Zabuye Salt Lake” (2001BA602B-02).

References

  1. 1.
    Visco S.J., Maithe C.C. (1989) J. Electrochem. Soc. 136:661CrossRefGoogle Scholar
  2. 2.
    Doeff M.M., Lerner M.M., Visco S.J. (1992) J. Eletrochem. Soc. 139: 2077CrossRefGoogle Scholar
  3. 3.
    Liu M.L., Visco S.J., Lutgard C.J. (1991) J. Electrochem. Soc. 138: 1896CrossRefGoogle Scholar
  4. 4.
    Oyama N., Tatsuma T., Sato T., Satomura T. (1995) Nature 373: 598CrossRefGoogle Scholar
  5. 5.
    Park J.E., Park S.G., Koukitu A. (2003) J. Electrochem. Soc. 150: A959CrossRefGoogle Scholar
  6. 6.
    Park J.E., Hatozaki O., Oyama N. (2003) Chem. Lett. 32: 138CrossRefGoogle Scholar
  7. 7.
    Park J.E., Park S.G., Koukitu A. (2004) Synthetic Met. 140: 121CrossRefGoogle Scholar
  8. 8.
    Michael D., Jiugeo H. (1994) J. Electroanal. Chem. 369:87CrossRefGoogle Scholar
  9. 9.
    Fall M., Aaron J.J., Dieng M.M. (2004) Polymer 41: 4047CrossRefGoogle Scholar
  10. 10.
    Franz H.H., Julia S.P., Joachim W.S. (2001) Electrochim. Acta 46: 3973CrossRefGoogle Scholar
  11. 11.
    Oyama N., Kiya Y., Hatozaki O., Morioka S., Abruna H.D. (2003) Electrochem. Solid State Lett. 6: A286–A289CrossRefGoogle Scholar
  12. 12.
    Yu L., Wang X.H., Li J. (1999) J. Electrochem. Soc. 145: 3230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Dong Shu
    • 1
    • 2
  • Jinghua Zhang
    • 2
    • 3
  • Chun He
    • 4
  • Yuezhong Meng
    • 2
  • Hongyu Chen
    • 1
  • Yongsheng Zhang
    • 3
  • Mianping Zheng
    • 3
  1. 1.School of Chemistry & EnvironmentalSouth China Normal UniversityGuangzhouP.R. China
  2. 2.Institute of Energy & Environment Materials, School of Physics Science & EngineeringSun Yat-Sen UniversityGuangzhouP.R. China
  3. 3.Institute of Mineral ResourcesChinese Academy of Geological SciencesBeijingP.R. China
  4. 4.Nanoarchitectonics Research Center (NARC)National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan

Personalised recommendations