Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 12, pp 1327–1332 | Cite as

Kinetic characterization of Prussian Blue-modified graphite electrodes for amperometric detection of hydrogen peroxide

  • Raluca C. Cretu
  • Delia M. Gligor
  • Laura Muresan
  • Ionel Catalin Popescu
  • Liana M. Muresan
Article

Abstract

Prussian Blue-modified graphite electrodes (G/PB) with electrocatalytic activity toward H2O2 reduction were obtained by PB potentiostatic electrodeposition from a mixture containing 2.5 mm FeCl3 + 2.5 mm K3[Fe(CN)6] +  0.1 m KCl + 0.1 m HCl. From cyclic voltammetric measurements, performed in KCl aqueous solutions of different concentrations (5 × 10−2–1 m), the rate constant for the heterogeneous electron transfer (k s) was estimated by using the Laviron treatment. The highest ks value (10.7 s−1) was found for 1 m KCl solution. The differences between the electrochemical parameters of the voltammetric response, as well as the shift of the formal potential, observed in the presence of Cl and NO 3 compared to those observed in the presence of SO 4 2− ions, points to the involvement of anions in the redox reactions of PB. The G/PB electrodes showed a good electrochemical stability proved by a low deactivation rate constant (0.8 × 10−12 mol cm2 s−1). The electrocatalytic efficiency, estimated as the ratio \((I_{cat})_{H_2 O_2 } /(I_{cat})\), was found to be 3.6 (at an applied potential of 0 mV vs. SCE; Γ = 5 × 10−8 mol cm−2) for a H2O2 concentration of 5 mm, thus indicating G/PB electrodes as possible H2O2 sensors.

Keywords

amperometric sensors hydrogen peroxide modified graphite electrodes Prussian Blue 

Notes

Acknowledgment

Financial support from CNCSIS (Grants Nr. 51/349 /2005 and TD 6/89-2005) is gratefully acknowledged.

References

  1. 1.
    Karyakin A.A., Karyakina E.E., Gorton L. (1999). Electrochem. Commun. 1:78CrossRefGoogle Scholar
  2. 2.
    Koncki R. (2002). Anal. Chem. 32:79Google Scholar
  3. 3.
    Karyakin A.A., Karyakina E.E., Gorton L. (1998). J. Electroanal. Chem. 456:97CrossRefGoogle Scholar
  4. 4.
    Feldman B.J., Melroy O.R. (1987). J. Electroanal. Chem. 234:213CrossRefGoogle Scholar
  5. 5.
    Keggin J.F., Miles F.D. (1936). Nature 137:577Google Scholar
  6. 6.
    Ellis D., Eckhoff M., Neff V.D.(1981). J. Phys. Chem. 85:1225CrossRefGoogle Scholar
  7. 7.
    Itaya K., Ataka T., Toshima S.(1982). J. Am. Chem. Soc. 104:4767CrossRefGoogle Scholar
  8. 8.
    Garcia Jareno J.J., Navarro-Laboulais J., Vicente F. (1996). Electrochim. Acta 41:835CrossRefGoogle Scholar
  9. 9.
    Karyakin A.(2001). Electroanalysis 13:813CrossRefGoogle Scholar
  10. 10.
    Huck H.(1999). Phys. Chem. Chem. Phys. 1:855CrossRefGoogle Scholar
  11. 11.
    Murray R.W. (1984). In: Bard A.J. (ed.) Electroanalytical Chemistry. Marcel Dekker, New York, pp. 191Google Scholar
  12. 12.
    Gorton L.(1995). Electroanalysis 7:23CrossRefGoogle Scholar
  13. 13.
    Kellawi H., Rosseinsky D.R. (1982). J. Electrochem. Soc.131:373Google Scholar
  14. 14.
    Murray R.W. (1992). In: Murray R.W. (ed.) Molecular Design of Electrode Surfaces. J. Wiley New York, pp. 1Google Scholar
  15. 15.
    Laviron E. (1979). J. Electroanal. Chem. 101:19CrossRefGoogle Scholar
  16. 16.
    Honeychurch M.J., Rechnitz G.A. (1998). Electroanalysis 5:285CrossRefGoogle Scholar
  17. 17.
    Malik M.A., Horanyi G., Kulesza P.J., Inzelt G., Kertesz V., Schmidt R., Czirok E. (1998). J. Electroanal. Chem. 452:57CrossRefGoogle Scholar
  18. 18.
    Feldman B.J., Murray R.W. (1987). Inorg. Chem. 26:1702CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Raluca C. Cretu
    • 1
  • Delia M. Gligor
    • 1
  • Laura Muresan
    • 1
  • Ionel Catalin Popescu
    • 1
  • Liana M. Muresan
    • 1
  1. 1.Department of Physical ChemistryBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations