Journal of Applied Electrochemistry

, Volume 37, Issue 1, pp 21–26 | Cite as

Feasibility of using PtFe alloys as cathodes in direct methanol fuel cells

  • K. Scott
  • W. Yuan
  • H. Cheng


Carbon-supported platinum–iron catalysts were fabricated and characterised by means of scanning electron microscopy, energy-dispersive X-ray system and X-ray diffraction. The catalysts were tested in electrochemical half cells for oxygen reduction using voltammetry and steady-state polarisation measurements and in direct methanol fuel cells. Use of PtFe/C cathodes, instead of a Pt/C cathode, partially suppressed methanol oxidation and led to higher net oxygen reduction currents in the presence of methanol. Consequently, an increase in power density up to 30% was achieved in direct methanol fuel cells with PtFe/C cathodes, compared to that with Pt/C cathode. The influence of alloy composition and operation conditions on the cell performance has been investigated.


direct methanol fuel cell Pt alloy catalysts oxygen reduction methanol crossover 



The authors thank the Carbon Trust and EPSRC for funding. The work was performed in research facilities provided through an EPSRC/HEFCE Joint Infrastructure Fund award (No. JIF4NESCEQ).


  1. 1.
    Lizcano-Valbuena W.H., Paganin V.A., Leite C.A.P., Galembeck F., Gonzalez E.R. (2003) Electrochim. Acta 48:3869CrossRefGoogle Scholar
  2. 2.
    Ren X., Zelenay P., Thomas S., Davey J., Gottesfeld S. (2000) J. Power Sources 86:111CrossRefGoogle Scholar
  3. 3.
    Yang H., Alonso-Vante N., Lamy C., Akins D.L. (2005) J. Electrochem. Soc. 152:A704CrossRefGoogle Scholar
  4. 4.
    Li W., Zhou W., Li H., Zhou Z., Zhou B., Sun G., Xin Q. (2004) Electrochim. Acta 49:1045CrossRefGoogle Scholar
  5. 5.
    Arico A.S., Srinivasan S., Antonucci V. (2001) Fuel Cells 1:133CrossRefGoogle Scholar
  6. 6.
    Bron M., Bogdanoff P., Fiechter S., Dorbant I., Hilgendorff M., Schulenburg H., Tributsch H. (2001) J. Electroanal. Chem. 500:510CrossRefGoogle Scholar
  7. 7.
    Reeve R.W., Christensen P.A., Dickinson A.J., Hamnett A., Scott K. (2000) Electrochim. Acta 45:4237CrossRefGoogle Scholar
  8. 8.
    Schmidt T.J., Paulus U.A., Gasteiger H.A., Alonso-Vante N., Behm R.J. (2000) J. Electrochem. Soc. 147:2620CrossRefGoogle Scholar
  9. 9.
    Convert P., Coutanceau C., Claguen F., Lamy C. (2001) J. Appl. Electrochem. 31:945CrossRefGoogle Scholar
  10. 10.
    Lefevre M., Dodelet J.P. (2003) Electrochim. Acta 48:2749CrossRefGoogle Scholar
  11. 11.
    Wei Z., Guo H., Tang Z. (1996) J. Power Sources 62:233CrossRefGoogle Scholar
  12. 12. (the reference codes are 06–0696 for Fe and 04–0802 for Pt).Google Scholar
  13. 13.
    Snyder R.L. (1999) in: Lifshin E. (ed.) X-ray Characterization of Materialss, Wiley-VCH, Weinheim, pp. 1–103Google Scholar
  14. 14.
    Cheng H., Scott K. (2003) J. Power Sources 123:137CrossRefGoogle Scholar
  15. 15.
    Hwang J.T., Chung J.S. (1993) Electrochim. Acta 38:2715CrossRefGoogle Scholar
  16. 16.
    Hirsch R., Delbecq F., Sautet P., Hafner J. (2003) J. Power Sources 217:354Google Scholar
  17. 17.
    Fortunelli A., Velasco A.M. (2002) J. Mol. Struct.: THEOCHEM 586:17CrossRefGoogle Scholar
  18. 18.
    Sun G.Q., Wang J.T., Savinell R.F. (1998) J. Appl. Electrochem. 28:1087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Chemical Engineering & Advanced MaterialsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations