Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 10, pp 1175–1182 | Cite as

Electrochemical treatment of olive mill wastewaters: Removal of phenolic compounds and decolourization

  • Chokri Belaid
  • Monem Kallel
  • Moncef Khadhraou
  • Gérard Lalleve
  • Boubaker Elleuch
  • Jean-François Fauvarque
Article

Abstract

Olive mill wastewaters (OMW) characterized by their dark brown colour and their very high content of phenolic compounds constitute an environmental concern, particularly in Mediterranean countries where the production of olive oil is important. In this investigation, OMW were electrolyzed at platinized expanded titanium electrodes in a modified Grignard reactor divided into two cylindrical compartments separated by a cation-exchange membrane. Results show better than 90% decolourization and nearly 85% removal of phenols, as established by gas chromatography/mass spectrometry, at high current intensity. This process can easily be monitored by cyclic voltammetry at a boron-doped diamond electrode. A significant reduction of chemical oxygen demand and total organic carbon was observed. The electrodes are not passivated and the ohmic potential drop is very low. Electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of phenolic compounds present in OMW.

Keywords

decolourization electrochemical oxidation olive mill wastewater phenols 

Notes

Acknowledgements

This work was financed by Agence Universitaire de la Francophonie. The authors are indebted to Dr John S. Lomas (Univ. Paris 7) for helpful discussions and for correcting the English.

References

  1. 1.
    Rozzi A., Malpei F. (1996) Int. Biodeter. Biodegrad. 38: 135CrossRefGoogle Scholar
  2. 2.
    Hamdi M. (1993) Environ. Technol. 14: 495Google Scholar
  3. 3.
    Borja R., Banks C.J., Maestro-Duran R., Alba J. (1996) Environ. Technol. 17: 167CrossRefGoogle Scholar
  4. 4.
    Beccari M., Carucci G., Majone M., Torrisi L. (1999) Environ. Technol. 20: 105CrossRefGoogle Scholar
  5. 5.
    Chakchouk M., Hamdi M., Foussard J.N., Debellefontaine H. (1994) Environ. Technol. 15: 323Google Scholar
  6. 6.
    Lin S.H., Wu Y.F. (1996) Environ. Technol. 17: 175CrossRefGoogle Scholar
  7. 7.
    Beltran F.J., Garcia-Araya J.F., Frades J., Alvaez P., Gimeno O. (1999) Water Res. 33:723CrossRefGoogle Scholar
  8. 8.
    Pokhrel D., Viraraghavan T. (2004) Sci. Total Environ. 333: 37–58CrossRefGoogle Scholar
  9. 9.
    Okouchi S., Nojima O., Arai T. (1992) Water Sci. Technol. 26: 2053Google Scholar
  10. 10.
    Entezari M.H., Pétrier C., Devidal P. (2003) Ultrason. Sonochem. 10: 103CrossRefGoogle Scholar
  11. 11.
    Amadelli R., De Battisti A., Girenko D.V., Kovalyov S.V., Velichenko A.B. (2000) Electrochim. Acta 46: 341CrossRefGoogle Scholar
  12. 12.
    Israilides C.J., Vlyssides A.G., Mourafeti V.N., Karvquni G. (1997) Bioresour. Technol. 61: 163CrossRefGoogle Scholar
  13. 13.
    Gotsi M., Kalogerakis N., Psillakis E., Samaras P., Mantzavinos D. (2005) Water Res. 39: 4177CrossRefGoogle Scholar
  14. 14.
    Panizza M., Cerisola G. (2006) Water Res. 40: 1179CrossRefGoogle Scholar
  15. 15.
    J.F. Fauvarque, C. Guerin, S. Petit and R. de Baynast, Fr. Pat. 92 no 15840 December (1992)Google Scholar
  16. 16.
    Fauvarque J.F., Mestre M., Trévin S., Marzouk H., Jud J.M. (1998) Actual. Chim. 10: 48Google Scholar
  17. 17.
    Mestre M., Fauvarque J.F., Marzouk H. (1998) Actual. Chim. 10: 38Google Scholar
  18. 18.
    Japanese Industrial Standard Handbook, Environmental technology testing method for industrial wastewater, Japanese Standard Association (1998) 1881Google Scholar
  19. 19.
    Box J.D. (1983) Water Res. 17: 511CrossRefGoogle Scholar
  20. 20.
    Sayadi S., Zorgani F., Ellouz R. (1996) Appl. Biochem. Biotechnol. 56: 265CrossRefGoogle Scholar
  21. 21.
    Longhi P., Vodopivec B., Fiori G. (2001) Anal. Chim. 91: 169–174Google Scholar
  22. 22.
    Belaid C., Kallel M., Elleuch B. (2002) Déchets – Rev. Francophone Ecol. Indust. 27: 30Google Scholar
  23. 23.
    Ergüder T.H., Güven E., Denirer G.N. (2000) Process Biochem. 36: 243CrossRefGoogle Scholar
  24. 24.
    Boye B., Dieng M.M., Brillas E. (2002) Environ. Sci. Technol. 36: 3030CrossRefGoogle Scholar
  25. 25.
    Gandini D., Maheâ E., Michaud P.A., Haenni W., Perret A., Comninellis C. (2000) J. Appl. Electrochem. 30: 1345CrossRefGoogle Scholar
  26. 26.
    Rodrigo M.A., Michaud P.A., Duo I., Panizza M., Cerisola G., Comninellis C. (2001) J. Electrochem. Soc. 148: 60CrossRefGoogle Scholar
  27. 27.
    Martinez-Huitle C.A., Quiroz M.A., Comninellis C., Ferro S., De Battisti A. (2004) Electrochim. Acta 50: 949CrossRefGoogle Scholar
  28. 28.
    Polcaro A.M., Vacca A., Palmas S., Mascia M. (2003) J. Appl. Electrochem. 33: 885CrossRefGoogle Scholar
  29. 29.
    Simond O., Schaller V., Comninellis C. (1997) Electrochem. Acta 42: 2009CrossRefGoogle Scholar
  30. 30.
    Ross N.C., Spackman R.A., Hitchman M.L., White P.C. (1997) J. Appl. Electrochem. 27: 51CrossRefGoogle Scholar
  31. 31.
    Körbahti B.K., Tanyola A. (2003) Water Res. 37: 1505CrossRefGoogle Scholar
  32. 32.
    Chettiar M., Watkinson A.P. (1983) Can. J. Chem. Eng. 61: 568CrossRefGoogle Scholar
  33. 33.
    Comninellis C., Pulgarin C. (1993) J. Appl. Electrochem. 23: 108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Chokri Belaid
    • 1
  • Monem Kallel
    • 1
  • Moncef Khadhraou
    • 1
  • Gérard Lalleve
    • 2
  • Boubaker Elleuch
    • 1
  • Jean-François Fauvarque
    • 2
  1. 1.Laboratory of Water-Energy-EnvironmentENIS – LARSENSfaxTunisia
  2. 2.Laboratory of Industrial ElectrochemistryCNAMParisFrance

Personalised recommendations