Journal of Applied Electrochemistry

, Volume 36, Issue 10, pp 1117–1125 | Cite as

Performance of ternary PtRuRh/C electrocatalyst with varying Pt:Ru:Rh ratio for methanol electro-oxidation

  • Tomoyuki Kawaguchi
  • Yasuhiro Rachi
  • Wataru Sugimoto
  • Yasushi Murakami
  • Yoshio Takasu


Highly dispersed ternary PtRuRh/C anode catalysts for direct methanol fuel cells were prepared with various contents and their electro-catalytic activities towards methanol oxidation at 25 °C and 60 °C were examined to investigate the influence of the catalyst composition. Electrocatalysts were prepared by a co-impregnation method using ethanolic solutions of metal precursors and carbon black followed by pyrolysis under reducing conditions. X-ray diffraction analysis revealed that the fcc peaks shifted to higher diffraction angles with increasing Rh content, indicating the alloying of Rh into the fcc structure. In terms of the mass specific current density, the activity towards methanol oxidation differed significantly depending on the catalysts composition and cell temperature. The catalyst prepared at a ratio of Pt:Ru:Rh = 1:1:2 exhibited the highest activity at 60 °C of 155 A (g-Pt)−1 at 0.5 V vs. RHE.


direct methanol fuel cell anode catalyst PtRuRh methanol electro-oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by the “Polymer Electrolyte Fuel Cell Program” from the New Energy and Industrial Technology Development Organization (NEDO) of Japan, in collaboration with Toray Industries, Inc., and a 21st Century COE Program from MEXT, Japan. The Pt(NH3)2(NO2)2 complex was a gift from Ishihuku Metal Industry Co., Ltd. We gratefully acknowledge their help.


  1. 1.
    Narayanan S.R., Valdez T.I. (2003) Portable direct methnol fuel cell systems. In: Vielstich W., Lamm A., Gasteiger H.A. (eds), Handbook of Fuel Cells Fundamentals Technology and Applications, Vol. 4. John Wiley & Sons Ltd, Chichester, pp. 1133–1141Google Scholar
  2. 2.
    Waszcuk P., Lu G.-Q., Wiecowski A., Lu C., Rice C., Masel R.I. (2002) Electrochim. Acta 47:3637CrossRefGoogle Scholar
  3. 3.
    Watanabe M., Motoo S. (1975) J. Electroanal. Chem. 60:267CrossRefGoogle Scholar
  4. 4.
    Iwasita T., Nart F.C., Vielstich W. (1990) Ber. Bunsen-Ges. Phys. Chem. 94:1030Google Scholar
  5. 5.
    Krausa M., Vielstich W. (1994) J. Electroanal. Chem. 379:307CrossRefGoogle Scholar
  6. 6.
    Tong Y.Y., Kim H.S., Babu P.K., Waszczuk P., Wieckowski A., Oldfield E. (2002) J. Am. Chem. Soc. 124:468CrossRefGoogle Scholar
  7. 7.
    Bockris J.O’M., Wroblowa H. (1964) J. Electroanal. Chem. 7:428CrossRefGoogle Scholar
  8. 8.
    Takasu Y., Fujiwara T., Murakami Y., Oguri M., Asaki T., Sugimoto W. (2000) J. Electrochem. Soc. 147:4421CrossRefGoogle Scholar
  9. 9.
    Gasteiger H.A., Markovic N., Ross P.N., Cairns E.J. Jr (1994) J. Phys. Chem. 98:617CrossRefGoogle Scholar
  10. 10.
    Friedrich A.K., Geyzers K.P., Linke U., Stimming U., Stumper J. (1996) J. Electroanal. Chem. 402:123CrossRefGoogle Scholar
  11. 11.
    Schmidt T.J., Noeske M., Gasteiger H.A., Behm R.J., Britz P., Brijoux W., Bonnemann H. (1997) Langmuir 13:2591CrossRefGoogle Scholar
  12. 12.
    Dinh H.N., Ren X., Garzon F.H., Zelenay P., Gottesfeld S. (2000) J. Electroanal. Chem. 491:222CrossRefGoogle Scholar
  13. 13.
    Kawaguchi T., Sugimoto W., Murakami Y., Takasu Y. (2004) Electrochem. Commun. 6:480CrossRefGoogle Scholar
  14. 14.
    Takasu Y., Itaya H., Iwazaki T., Miyoshi R., Ohnuma T., Sugimoto W., Murakami Y. (2001) Chem. Commun. 2001:341CrossRefGoogle Scholar
  15. 15.
    Takasu Y., Sugimoto W., Murakami Y. (2003) Catal. Surv. Asia 7:21CrossRefGoogle Scholar
  16. 16.
    Morimoto Y., Yeager E.B. (1998) J. Electroanal. Chem. 444:95CrossRefGoogle Scholar
  17. 17.
    Frelink T., Visscher W., Van Veen J.A.R. (1995) Surf. Sci. 335:353CrossRefGoogle Scholar
  18. 18.
    Gotz M., Wendt H. (1998) Electrochim. Acta 43:3637CrossRefGoogle Scholar
  19. 19.
    Koch D.F.A., Rand D.A.J., Woods R. (1976) J. Electroanal. Chem. 70:73CrossRefGoogle Scholar
  20. 20.
    Lei H.W., Suh S., Gurau B., Workie B., Liu R., Smotkin E.S. (2002) Electrochim. Acta 47:2913CrossRefGoogle Scholar
  21. 21.
    Janssen M.M.P., Moolhuysen J. (1976) Electrochim. Acta 21:861CrossRefGoogle Scholar
  22. 22.
    Frelink T., Visscher W., van Veen J.A.R. (1994) Electrochim. Acta 39:1871CrossRefGoogle Scholar
  23. 23.
    Frelink T., Visscher W., Cox A.P., van Veen J.A.R. (1995) Electrochim. Acta 40:1537CrossRefGoogle Scholar
  24. 24.
    Wang K., Gasteiger H.A., Markovic N.M., Ross P.N., Jr (1996) Electrochim. Acta 41:2587CrossRefGoogle Scholar
  25. 25.
    Beden B., Kadirgan F., Lamy C., Leger J.M. (1981) J. Electroanal. Chem. 127:75CrossRefGoogle Scholar
  26. 26.
    Shibata M., Motoo S. (1986) J. Electroanal. Chem. 209:151CrossRefGoogle Scholar
  27. 27.
    Bittins-Cattaneo B., Iwasita T. (1987) J. Electroanal. Chem. 238:151CrossRefGoogle Scholar
  28. 28.
    Aricò A.S., Antonucci V., Giordano N., Shukla A.K., Ravikumar M.K., Roy A., Barman S., Sarma D.D. (1994) J. Power Sources 50:295CrossRefGoogle Scholar
  29. 29.
    Stalnionis G., Tamašauskaitė-Tamašiūnaitė L., Pautienienė V., Jusys Z. (2004) J. Solid State Electrochem. 8:900CrossRefGoogle Scholar
  30. 30.
    Haner A.N., Ross P.N. (1991) J. Phys Chem. 95:3740CrossRefGoogle Scholar
  31. 31.
    Shukla A.K., Aricò A.S., El-Khatib K.M., Kim H., Antonucci P.L., Antonucci V. (1999) Appl. Surf. Sci. 137:20CrossRefGoogle Scholar
  32. 32.
    Kita H., Nalajima H., Shimizu K. (1988) J. Electroanal. Chem. 248:181CrossRefGoogle Scholar
  33. 33.
    Samjeské G., Wang H., Löffler T., Baltruschat H. (2002) Electrochim. Acta 47:3681CrossRefGoogle Scholar
  34. 34.
    Mukerjee S., Urian R.C. (2002) Electrochim Acta 47:3219CrossRefGoogle Scholar
  35. 35.
    Oliveira R.T.S., Santos M.C., Marcussi B.G., Nascente P.A.P., Bulhões L.O.S., Pereira E.C. (2005) J. Electroanal. Chem 575:177CrossRefGoogle Scholar
  36. 36.
    He C., Kunz H.R., Fenton J.M. (1997) J. Electrochem. Soc. 144:970CrossRefGoogle Scholar
  37. 37.
    He C., Kunz H.R., Fenton J.M. (2003) J. Electrochem. Soc. 150:A1017CrossRefGoogle Scholar
  38. 38.
    Venkataraman D.R., Kunz H.R., Fenton J.M. (2003) J. Electrochem. Soc. 150:A278CrossRefGoogle Scholar
  39. 39.
    Guau B., Viswanathan R., Liu R., Lafrenz T.J., Ley K.L., Smotkin E.S., Reddington E., Sapienza A., Chan B.C., Mallouk T.E., Sarangapani S. (1998) J. Phys. Chem. B 102:9997CrossRefGoogle Scholar
  40. 40.
    Ley K.L., Liu R., Pu C., Fan Q., Leyarovska N., Segre C., Smotkin E.S. (1997) J. Electrochem. Soc. 144:1543CrossRefGoogle Scholar
  41. 41.
    Lima A., Coutanceau C., Leger J.M., Lamy C. (2001) J. Appl. Electrochem. 31:379CrossRefGoogle Scholar
  42. 42.
    Umeda M., Ojima H., Mohamedi M., Uchida I. (2004) J. Power Sources 136:10CrossRefGoogle Scholar
  43. 43.
    Park K.-W., Choi J.-H., Kwon B.-K., Lee S.-A., Sung Y.-E., Ha H.-Y., Hong S.-A., Kim H., Wieckowski A. (2002) J. Phys. Chem. B 106:1869CrossRefGoogle Scholar
  44. 44.
    Choi J.-H., Park K.-W., Park I.-S., Nam W.-H., Sung Y.-E. (2004) Electrochim. Acta 50:787CrossRefGoogle Scholar
  45. 45.
    Aramata A., Masuda M. (1991) J. Electrochem. Soc. 138:1949CrossRefGoogle Scholar
  46. 46.
    Choi W.C., Kim J.D., Woo S.I. (2002) Catal. Today 74:235CrossRefGoogle Scholar
  47. 47.
    Park K.-W., Choi J.-H., Lee S.-A., Pak C., Chang H., Sung Y.-E. (2004) J. Catal. 224:236CrossRefGoogle Scholar
  48. 48.
    Dickinson A.J., Carrette L.P.L., Collins J.A., Friedrich K.A., Stimming U. (2004) J. Appl. Electrochem. 34:975CrossRefGoogle Scholar
  49. 49.
    Ren X., Zelenay P., Thomas S., Davey J., Gottesfeld S. (2000) J. Power Sources 86:111CrossRefGoogle Scholar
  50. 50.
    Gasteiger H.A., Markovic N., Ross P.N., Jr, Cairns E.J. (1994) J. Electrochem. Soc. 141:1795CrossRefGoogle Scholar
  51. 51.
    Wakabayashi N., Uchida H., Watanabe M. (2002) Electrochem. Solid-State Lett. 5:E62CrossRefGoogle Scholar
  52. 52.
    Aricò A.S., Baglio V., Di Blasi A., Modica E., Antonucci P.L., Antonucci V. (2003) J. Electroanal. Chem. 557:167CrossRefGoogle Scholar
  53. 53.
    Massalski T.B. (1990) Binary Alloy Phase Diagrams. ASM International, Materials Park, OhioGoogle Scholar
  54. 54.
    Schmidt T.J., Noeske M., Gasteiger H.A., Behm R.J., Britz P., Bönnemann H.J. (1998) J. Electrochem. Soc. 145:925CrossRefGoogle Scholar
  55. 55.
    Schmidt T.J., Gasteiger H.A., Stäb G.D., Urban P.M., Kolb D.M., Behm R.J. (1998) J. Electrochem. Soc. 145:2354CrossRefGoogle Scholar
  56. 56.
    Schultz T., Zhou S., Sundmacher K. (2001) Chem. Eng. Technol. 24:1223CrossRefGoogle Scholar
  57. 57.
    Wasmus S., Küver A. (1999) J. Electroanal. Chem. 461:14CrossRefGoogle Scholar
  58. 58.
    Arico A.S., Srinivasan S., Antonucci V. (2001) Fuel Cells 1:133CrossRefGoogle Scholar
  59. 59.
    Friedrich K.A., Geyzers K.P., Dickinson A.J., Stimming U. (2002) J. Electroanal. Chem. 524–525:261CrossRefGoogle Scholar
  60. 60.
    Kardash D., Korzeniewski C., Markovic N. (2001) J. Electroanal. Chem. 500:518CrossRefGoogle Scholar
  61. 61.
    Batista E.A., Hoster H., Iwasita T. (2003) J. Electroanal. Chem. 554:265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tomoyuki Kawaguchi
    • 1
  • Yasuhiro Rachi
    • 1
  • Wataru Sugimoto
    • 1
  • Yasushi Murakami
    • 1
  • Yoshio Takasu
    • 1
  1. 1.Department of Fine Materials Engineering, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan

Personalised recommendations