Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 11, pp 1281–1290 | Cite as

Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology

  • A. Heyl
  • J. Jörissen
Article

Abstract

Ion exchange membranes as solid polymer electrolytes (SPE) facilitate the electrochemical detoxification of waste water without addition of supporting electrolyte. Cation exchange membranes as H+ ion conductors or anion exchange membranes as OH ion conductors were used in combination with different electrode materials. A variety of cell configurations were investigated which differ in the direction of the electro-osmotic stream (EOS). This is a characteristical property of SPE technology, caused by the solvation shells of the ions during their migration through the membrane. Dependent on cell configuration mass transfer at the electrodes can be hindered or enhanced by EOS. In the latter case it is appropriate to increase EOS by preparation of Nafion® membranes in order to decrease energy consumption per m3 waste water. Using a perforated membrane, which operates in this case only as ion conducting solid polymer electrolyte but not as cell separator, flow rates through the cell can be adjusted independent of the EOS and a further decrease of energy consumption is possible. The best results were obtained using anodic oxidation followed by cathodic reduction: 2-chlorophenol as example compound was destroyed almost completely and more than 80% of the chlorine was mineralized to chloride ions. By-products were detected in very low amounts, less than the remaining traces of 2-chlorophenol.

Keywords

chlorinated organic compounds dechlorination detoxification electro-osmotic stream ion exchange membrane solid polymer electrolyte SPE technology 

Abbreviations

AEM

anion exchange membrane

CEM

cation exchange membrane

CHQ

chlorohydroquinone

2-CP

2-chlorophenol

DMF

N,N-dimethylformamide

EOS

electro-osmotic stream

FEP

fluorinated ethylene propylene co-polymer

MEA

membrane electrode assembly

MF

N-methylformamide

PEMFC

proton exchange membrane fuel cell (polymer electrolyte membrane fuel cell)

PTFE

poly(tetrafluoroethylene)

SPE

solid polymer electrolyte

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge financial support from Max-Buchner-Forschungsstiftung of DECHEMA e.V., Frankfurt am Main. Sincere thanks are given to Du Pont de Nemours Deutschland GmbH, Tokuyama Europe GmbH and Sigri Great Lakes Carbon Group for providing materials. The authors are indebted to Institut für Umwelttechnik der Universität Dortmund (INFU) for special analyses.

References

  1. 1.
    Rajeshwar K, Ibanez J. (1997). Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Vielstich W., Lamm A., Gasteiger H. (eds) (2003) Handbook of Fuel Cells – Fundamentals, Technology, Applications. Wiley, ChichesterGoogle Scholar
  3. 3.
    Ogumi Z., Nishio K., Yoshizawa S. (1981). Electrochim. Acta 26:1779CrossRefGoogle Scholar
  4. 4.
    Jörissen J. (1996) Electrochim. Acta 41:553CrossRefGoogle Scholar
  5. 5.
    Jörissen J. (2003). J. Appl. Electrochem. 33:969CrossRefGoogle Scholar
  6. 6.
    Fotiadis T., Kyriacou G., Lambrou C., Hadjispyrou S. (2000). J. Anal. Chem. 480:249CrossRefGoogle Scholar
  7. 7.
    M. Inaba, K. Sawai, Z. Ogumi and Z. Takehara, Chem. Lett. (1995) 471Google Scholar
  8. 8.
    Iwakura C, Tsushiyama Y, Higashiyama K, Higuchi E (2004) J. Electrochem. Soc. 151:D1CrossRefGoogle Scholar
  9. 9.
    Liu Z., Arnold R.G., Betterton E.A., Smotkin E. (2001). Environ. Sci. Technol. 35:4320CrossRefGoogle Scholar
  10. 10.
    Johnson S.K., Houk L.L., Feng J., Houk R.S., Johnson D.C. (1999). Environ. Sci. Technol. 33:2638CrossRefGoogle Scholar
  11. 11.
    Cheng H., Scott K., Christensen P.A. (2004). J. Electroanal. Chem. 566:131CrossRefGoogle Scholar
  12. 12.
    M. Yamane, Y. Murakami, S. Takeda, Z. Siroma and S. Wakida, Proc. – Electrochem. Soc. (2000), 99–39 (Environmental Aspects of Electrochemical Technology, 219Google Scholar
  13. 13.
    Simond O., Comninellis C. (1997). Electrochim. Acta 42:2013CrossRefGoogle Scholar
  14. 14.
    Grimm J.H., Bessarabov D.G., Simon U., Sanderson R.D. (2000). J. Appl. Electrochem. 30:293CrossRefGoogle Scholar
  15. 15.
    A. Kornouchova and J. Jörissen, Electrochemical Detoxification of Chlorinated Compounds using the Solid Polymer Electrolyte Technology. Proceedings Topic 17, Poster 3rd Europ. Congr. Chem. Eng., June 26–28, Nuremberg, Germany (2001)Google Scholar
  16. 16.
    A. Heyl (former name A. Kornouchova), Elektrochemische Entchlorung von Schadstoffen im Abwasser mit Hilfe der Solid-Polymer-Electrolyte-Technologie, Doctoral Thesis, University of Dortmund, Germany (2005)Google Scholar
  17. 17.
    Hoormann D., Kubon C., Jörissen J., Kröner L., Pütter H. (2001). J. Electroanal. Chem. 507:215CrossRefGoogle Scholar
  18. 18.
    G.D. Zappi, Scale-Up Experience: Electrochemical Water Purification, 14th International Forum on Applied Electrochemistry, November 12–16. Clearwater Beach, Florida, USA (2000)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Biochemical and Chemical Engineering, Technical Chemistry AUniversity of DortmundDortmundGermany

Personalised recommendations