Journal of Applied Electrochemistry

, Volume 36, Issue 9, pp 1011–1019 | Cite as

Testing of electrochromic materials using symmetrical devices

  • C. Lefrou
  • C. Gentilhomme
  • M. Ast


“Symmetric materials” devices, where both electrodes are made of the same electrochromic materials, allow the in situ study of side reactions. Each transferred charge that is not used for the expected electrochromic reaction will cause a colour change in the whole symmetric device. Two electrochromic materials, WO3 and IrO2, are successively used to show how to obtain information about side reactions such as faradaic efficiency, reversibility and potential limits from the symmetric experiment. This in situ approach with a polymer electrolyte shows significant differences compared to results obtained with studies in aqueous electrolytes.


colouration parameters electrochromic systems in situ studies iridium oxide side reactions tungsten oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Lampert and C.G. Granqvist, Large Area Chromogenics: Materials and Devices for Transmittance Control’ (Editors, SPIE Coloration Engineering Press, Bellingham, WA, 1990)Google Scholar
  2. 2.
    Buffat B., Lerbet F. (1991) La recherche 22:434Google Scholar
  3. 3.
    Mortimer R.J. (1997) Chem. Soc. Rev. 26:147CrossRefGoogle Scholar
  4. 4.
    Rauh R.D. (1999) Electrochim. Acta 44:3165CrossRefGoogle Scholar
  5. 5.
    Lampert C.M. (2002) Glass Sci. Technol. 75:244Google Scholar
  6. 6.
    Taunier S., Guery C., Tarascon J-M. (1999) Electrochim. Acta 44:3219CrossRefGoogle Scholar
  7. 7.
    Chen L-C., Ho K-C. (2001) Electrochim. Acta 46:2159CrossRefGoogle Scholar
  8. 8.
    Rauh R.D., Cogan S.F. (1993) J. Electrochem. Soc. 140:378CrossRefGoogle Scholar
  9. 9.
    Rauh R.D. (1995) Solar Energy Mater. Solar Cells 39:145CrossRefGoogle Scholar
  10. 10.
    C. Lefrou, C. Gentilhomme, Proc. 190th meeting of the Electrochemical Society, San Antonio, USA, 6–11 October, 800, 1996Google Scholar
  11. 11.
    R.D. Rauh and S.F. Cogan, in [1]Google Scholar
  12. 12.
    Petit M.A., Plichon V. (1998) J. Electroanal. Chem. 444:247CrossRefGoogle Scholar
  13. 13.
    Conway B.E. (1991) J. Electrochem. Soc. 138:1539CrossRefGoogle Scholar
  14. 14.
    Schiavone L.M., Dautremont-Smith W.C., Beni G., Shay J.L. (1981) J. Electrochem. Soc. 128:1339CrossRefGoogle Scholar
  15. 15.
    Azens A., Granqvist C.G. (2003) J. Solid State Electrochem. 7:64Google Scholar
  16. 16.
    Granqvist C.G., Avendano E., Azens A. (2003) Thin Solid Films 442:201CrossRefGoogle Scholar
  17. 17.
    O’M Bockris J., Khan S.U.M. (1993) Surface Electrochemistry, A Molecular Level Approach. Plenum Press, New YorkGoogle Scholar
  18. 18.
    Ho K.C. (1999) Solar Energy Mater. Solar Cells 56:271CrossRefGoogle Scholar
  19. 19.
    Ahn K.S., Nah Y.C., Park J.Y., Sung Y.E., Cho K.Y., Shin S.S. (2003) Appl. Phys. Lett. 82:3379CrossRefGoogle Scholar
  20. 20.
    C. Lefrou, O. Marrot and F. Garot, Proc. Materials Research Society Symposium, Boston, USA, 27 November-1st December (1995), Solid State Ionics IV, 369, 657Google Scholar
  21. 21.
    C. Lefrou, F. Defendini, O. Marrot and F. Garot, Electrochromic window, FR 93-07096/EP94 401278/Pat No. 628849Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.INPG-Ecole Nationale Supérieure d’Electrochimie et d’Electrométallurgie de Grenoble, Laboratoire d’Electrochimie et Physico-chimie des Matériaux et Interfaces, UMR 5631 CNRS-INPGSaint Martin d’HèresFrance
  2. 2.Saint-Gobain RechercheAubervilliers CedexFrance

Personalised recommendations