Journal of Applied Electrochemistry

, Volume 36, Issue 6, pp 669–676 | Cite as

Effects of current density on the structure of Ni and Ni–Mn electrodeposits

  • E. A. Marquis
  • A. A. Talin
  • J. J. Kelly
  • S. H. Goods
  • J. R. Michael


Grain size and texture of Ni electrodeposited from sulfamate baths depend greatly on current density. Increasing grain size is observed with increasing current density and the deposit texture changes from 〈110〉 at current densities lower than 5 mA cm−2 to 〈100〉 for higher current densities. Co-deposition of Mn modifies the deposit structure by favoring the growth of the 〈110〉 texture and decreasing the average grain size even as the current density increases. While the average Mn film content increases with increasing current density, local Mn concentrations are a more complex function of deposition parameters, as indicated by atom probe tomography measurements. In both direct-current plated and pulse plated films, large variations on a nanometer scale in local Mn concentration are observed.


atom probe tomography electrodeposition microstructure Ni Ni–Mn sulfamate bath texture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Joshua Funamura, Andy Gardea, and Michael Rye are thanked for support in sample preparation and characterization. EAM specially thanks the staff at Imago Scientific Instruments Co., and the Northwestern University Center for Atom Probe Tomography. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.


  1. 1.
    Weil R., Sumka H.J. and Greene G.W. (1967). J. Electrochem. Soc. 114:449CrossRefGoogle Scholar
  2. 2.
    Kelly J.J., Goods S.H. and Yang N.Y.C. (2003). Electrochem. Solid State Lett. 6:C88–91CrossRefGoogle Scholar
  3. 3.
    Buchheit T.E., LaVan D.A., Michael J.R., Christenson T.R. and Leith S.D. (2002). Metall. Mater. Trans. A 33:539–554CrossRefGoogle Scholar
  4. 4.
    Goods S.H., Kelly J.J. and Yang N.Y.C. (2004). Microsyst. Technol. 10:498–505CrossRefGoogle Scholar
  5. 5.
    Mandich N.V. and Baudrand D.W. (2002). Plat. Surf. Finish. 89:68–76Google Scholar
  6. 6.
    Atanassov N. and Mitreva V. (1996). Surf. Coat. Technol. 78:144–149CrossRefGoogle Scholar
  7. 7.
    Dini J.W. (1993). Electrodeposition: The Materials Science of Coatings and Substrates. Noyes Publications, WestwoodGoogle Scholar
  8. 8.
    Malone G.A. (1987). Plat Surf Finish 74:50–56Google Scholar
  9. 9.
    A.A. Talin, E.A. Marquis, S.H. Goods and J.J. Kelly, Acta Mater. (in press)Google Scholar
  10. 10.
    Kocks U.F., Tome C.N. and Wenk H.R. (1998). Texture and Anisotropy, Preferred Orientatoin in Polyscyrtals and their Effect on Materials Properties. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Information on the BEARTEX package is available via the following web site:∼Wenk/TexturePage/beartex.html
  12. 12.
    Goldstein J.I. et al. (2003). Scanning Electron Microscopy and X-ray Microanalysis. Kluwer Academic/Plenum Publishing, New YorkGoogle Scholar
  13. 13.
    Miller M.K. and Smith G.D.W. (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. MSR, PittsburgGoogle Scholar
  14. 14.
    Atanassov N. and Schils H.W. (1999). J. Appl. Electrochem. 29:51CrossRefGoogle Scholar
  15. 15.
    Thuvander M., Abraham M., Cerezo A. and Smith G.D.W. (2001). Mater. Sci. Technol. 17:961–970Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. A. Marquis
    • 1
  • A. A. Talin
    • 1
  • J. J. Kelly
    • 1
    • 3
  • S. H. Goods
    • 1
  • J. R. Michael
    • 2
  1. 1.Sandia National LaboratoriesLivermoreUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.IBM/ T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations