Journal of Applied Electrochemistry

, Volume 36, Issue 5, pp 603–608 | Cite as

Dissolution kinetics of WO3 in acidic solutions

  • Mustafa Anik
  • Tuba Cansizoglu


Potentiostatic polarization and rotating disk electrode techniques were used to obtain the rate constant for the dissolution of electrochemically-formed (at 1 V) WO3 on tungsten (W) in acidic solutions. The corresponding rate constant for the chemical dissolution of WO3(s) powder was found by measuring the dissolved tungsten concentration as a function of time and pH. The chemical dissolution experiments supported the view that the rate-determining step in the anodic reaction of W in acidic solution is the chemical dissolution of WO3(s) formed on the metal surface. Zeta potential measurements gave the isoelectric point (iep) of the WO3(s) powder as pH 1.5, a value that was somewhat smaller than the point of zero charge (pzc) of WO3(s) formed on W metal (pH 2.5). This difference was attributed to the highly hydrated nature of the oxide film formed on W metal in aqueous systems.


CMP dissolution kinetics rate constant tungsten tungsten oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steigerwald J.M., Murarka S.P., Gutmann R.J. (1997). Chemical Mechanical Planarization of Microelectronic Materials. Wiley, New York, p. 1CrossRefGoogle Scholar
  2. 2.
    Kaufman F.B., Thompson D.B., Broadie R.E., Jaso M.A., Guthrie W.L., Pearson D.J., Small M.B. (1991). J. Electrochem. Soc. 138:3460CrossRefGoogle Scholar
  3. 3.
    Kneer E.A., Raghunath C., Raghavan S., Jeon J.S. (1996). J. Electrochem. Soc. 143:4095CrossRefGoogle Scholar
  4. 4.
    S. Basak, K. Mishra, B. Withers and K. Rajeshwar, in S. Raghavan and I. Ali (Eds), First Int. Symp. Chemical Mechanical Planarization, Vol. 96-22 (Electrochem. Soc. Proc., Pennington, NJ, 1997) p. 137Google Scholar
  5. 5.
    C. Raghunath, K.T. Lee, E.A. Kneer, V. Mathew and S. Raghavan, in S. Raghavan and I. Ali (Eds), First Int. Symp. Chemical Mechanical Planarization, Vol. 96-22 (Electrochem. Soc. Proc., Pennington, NJ, 1997) p. 1Google Scholar
  6. 6.
    Kneer E.A., Raghunath C., Mathew V., Raghavan S., Jeon J.S. (1997). J. Electrochem. Soc. 144:3041CrossRefGoogle Scholar
  7. 7.
    Stein D.J., Hetherington D., Guilinger T., Cecchi J.L. (1998). J Electrochem Soc. 145:3190CrossRefGoogle Scholar
  8. 8.
    Stein D.J., Hetherington D., Cecchi J.L. (1999). J Electrochem Soc 146:376CrossRefGoogle Scholar
  9. 9.
    Tamboli D., Seal S., Desai V. (1999). J. Vac. Sci. Technol. A 17:1168Google Scholar
  10. 10.
    Johnson J.W., Wu C.L. (1971). J. Electrochem. Soc. 118:1909CrossRefGoogle Scholar
  11. 11.
    Heumann T., Stolica N. (1971). Electrochim. Acta 16:1635CrossRefGoogle Scholar
  12. 12.
    Armstrong R.D., Edmonson K., Firman R.E. (1972). J. Electroanal. Chem 40:19CrossRefGoogle Scholar
  13. 13.
    Arora M.R., Kelly R. (1974). Electrochim. Acta 19:413CrossRefGoogle Scholar
  14. 14.
    Arora M.R., Kelly R. (1977). J. Electrochem. Soc. 124:1493CrossRefGoogle Scholar
  15. 15.
    Di Quarto F., Di Paola A., Sunseri C. (1980). J. Electrochem. Soc. 127:1016CrossRefGoogle Scholar
  16. 16.
    Di Quarto F., Di Paola A., Sunseri C. (1981). Electrochim. Acta 26:1177CrossRefGoogle Scholar
  17. 17.
    Lillard R.S., Kanner G.S., Butt D.P. (1998). J. Electrochem. Soc. 145:2718CrossRefGoogle Scholar
  18. 18.
    Van Put J.W., Duyvesteyn W.P.C., Luger F.G.J. (1991). Hydrometallurgy 26:1CrossRefGoogle Scholar
  19. 19.
    Van Put J.W., De Koning P.M. (1992). Hydrometallurgy 28:353CrossRefGoogle Scholar
  20. 20.
    Anik M., Osseo-Asare K. (2002). J. Electrochem. Soc. 149:B224CrossRefGoogle Scholar
  21. 21.
    Anik M., Cansızoglu T., Cevik S. (2004). Turk. J. Chem. 28:425Google Scholar
  22. 22.
    Pleskov Yu.V., Filinovskii V.Yu. (1976). The Rotating Disc Electrode. Plenum, New York, p. 1Google Scholar
  23. 23.
    Bard A.J., Faulkner L.R. (2001). Electrochemical Methods Fundamentals and Applications. John Wiley, New York 2nd Ed. p. 331Google Scholar
  24. 24.
    Parks G.A. (1965). Chem. Rev. 65:177CrossRefGoogle Scholar
  25. 25.
    Macdonald D.D., Sikora E., Sikora J. (1998). Electrochim Acta 43:2851CrossRefGoogle Scholar
  26. 26.
    S.M. Ahmed, in J.W. Diggle (Ed), ‘Oxides and Oxide Films’, Vol. 1, (Marcel Dekker, New York, 1972) p. 319Google Scholar
  27. 27.
    Stumm W. (1992). Chemistry of the Solid – Water Interface. John Wiley, New York p. 157Google Scholar
  28. 28.
    O’Connor D.J., Johansen P.G., Buchanan A.S. (1956). Trans. Faraday Soc. 52:229CrossRefGoogle Scholar
  29. 29.
    Robinson M. Pask J.A., Fuerstenau D.W. (1964). J. Am. Ceram. Soc. 47:516CrossRefGoogle Scholar
  30. 30.
    Metikos-Hukovic M., Grubac Z. (2003). J. Electroanal. Chem. 556:167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Metallurgy InstituteOsmangazi UniversityEskisehirTurkey
  2. 2.Department of Metallurgical and Materials EngineeringEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations