Skip to main content
Log in

Dissolution kinetics of WO3 in acidic solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Potentiostatic polarization and rotating disk electrode techniques were used to obtain the rate constant for the dissolution of electrochemically-formed (at 1 V) WO3 on tungsten (W) in acidic solutions. The corresponding rate constant for the chemical dissolution of WO3(s) powder was found by measuring the dissolved tungsten concentration as a function of time and pH. The chemical dissolution experiments supported the view that the rate-determining step in the anodic reaction of W in acidic solution is the chemical dissolution of WO3(s) formed on the metal surface. Zeta potential measurements gave the isoelectric point (iep) of the WO3(s) powder as pH 1.5, a value that was somewhat smaller than the point of zero charge (pzc) of WO3(s) formed on W metal (pH 2.5). This difference was attributed to the highly hydrated nature of the oxide film formed on W metal in aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steigerwald J.M., Murarka S.P., Gutmann R.J. (1997). Chemical Mechanical Planarization of Microelectronic Materials. Wiley, New York, p. 1

    Book  Google Scholar 

  2. Kaufman F.B., Thompson D.B., Broadie R.E., Jaso M.A., Guthrie W.L., Pearson D.J., Small M.B. (1991). J. Electrochem. Soc. 138:3460

    Article  CAS  Google Scholar 

  3. Kneer E.A., Raghunath C., Raghavan S., Jeon J.S. (1996). J. Electrochem. Soc. 143:4095

    Article  CAS  Google Scholar 

  4. S. Basak, K. Mishra, B. Withers and K. Rajeshwar, in S. Raghavan and I. Ali (Eds), First Int. Symp. Chemical Mechanical Planarization, Vol. 96-22 (Electrochem. Soc. Proc., Pennington, NJ, 1997) p. 137

  5. C. Raghunath, K.T. Lee, E.A. Kneer, V. Mathew and S. Raghavan, in S. Raghavan and I. Ali (Eds), First Int. Symp. Chemical Mechanical Planarization, Vol. 96-22 (Electrochem. Soc. Proc., Pennington, NJ, 1997) p. 1

  6. Kneer E.A., Raghunath C., Mathew V., Raghavan S., Jeon J.S. (1997). J. Electrochem. Soc. 144:3041

    Article  CAS  Google Scholar 

  7. Stein D.J., Hetherington D., Guilinger T., Cecchi J.L. (1998). J Electrochem Soc. 145:3190

    Article  CAS  Google Scholar 

  8. Stein D.J., Hetherington D., Cecchi J.L. (1999). J Electrochem Soc 146:376

    Article  CAS  Google Scholar 

  9. Tamboli D., Seal S., Desai V. (1999). J. Vac. Sci. Technol. A 17:1168

    Google Scholar 

  10. Johnson J.W., Wu C.L. (1971). J. Electrochem. Soc. 118:1909

    Article  CAS  Google Scholar 

  11. Heumann T., Stolica N. (1971). Electrochim. Acta 16:1635

    Article  CAS  Google Scholar 

  12. Armstrong R.D., Edmonson K., Firman R.E. (1972). J. Electroanal. Chem 40:19

    Article  CAS  Google Scholar 

  13. Arora M.R., Kelly R. (1974). Electrochim. Acta 19:413

    Article  CAS  Google Scholar 

  14. Arora M.R., Kelly R. (1977). J. Electrochem. Soc. 124:1493

    Article  CAS  Google Scholar 

  15. Di Quarto F., Di Paola A., Sunseri C. (1980). J. Electrochem. Soc. 127:1016

    Article  CAS  Google Scholar 

  16. Di Quarto F., Di Paola A., Sunseri C. (1981). Electrochim. Acta 26:1177

    Article  CAS  Google Scholar 

  17. Lillard R.S., Kanner G.S., Butt D.P. (1998). J. Electrochem. Soc. 145:2718

    Article  CAS  Google Scholar 

  18. Van Put J.W., Duyvesteyn W.P.C., Luger F.G.J. (1991). Hydrometallurgy 26:1

    Article  CAS  Google Scholar 

  19. Van Put J.W., De Koning P.M. (1992). Hydrometallurgy 28:353

    Article  CAS  Google Scholar 

  20. Anik M., Osseo-Asare K. (2002). J. Electrochem. Soc. 149:B224

    Article  CAS  Google Scholar 

  21. Anik M., Cansızoglu T., Cevik S. (2004). Turk. J. Chem. 28:425

    CAS  Google Scholar 

  22. Pleskov Yu.V., Filinovskii V.Yu. (1976). The Rotating Disc Electrode. Plenum, New York, p. 1

    Google Scholar 

  23. Bard A.J., Faulkner L.R. (2001). Electrochemical Methods Fundamentals and Applications. John Wiley, New York 2nd Ed. p. 331

    Google Scholar 

  24. Parks G.A. (1965). Chem. Rev. 65:177

    Article  CAS  Google Scholar 

  25. Macdonald D.D., Sikora E., Sikora J. (1998). Electrochim Acta 43:2851

    Article  CAS  Google Scholar 

  26. S.M. Ahmed, in J.W. Diggle (Ed), ‘Oxides and Oxide Films’, Vol. 1, (Marcel Dekker, New York, 1972) p. 319

  27. Stumm W. (1992). Chemistry of the Solid – Water Interface. John Wiley, New York p. 157

    Google Scholar 

  28. O’Connor D.J., Johansen P.G., Buchanan A.S. (1956). Trans. Faraday Soc. 52:229

    Article  CAS  Google Scholar 

  29. Robinson M. Pask J.A., Fuerstenau D.W. (1964). J. Am. Ceram. Soc. 47:516

    Article  CAS  Google Scholar 

  30. Metikos-Hukovic M., Grubac Z. (2003). J. Electroanal. Chem. 556:167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Anik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anik, M., Cansizoglu, T. Dissolution kinetics of WO3 in acidic solutions. J Appl Electrochem 36, 603–608 (2006). https://doi.org/10.1007/s10800-006-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9113-3

Keywords

Navigation