Journal of Applied Electrochemistry

, Volume 36, Issue 6, pp 649–654 | Cite as

Effect of Cr(III) solution chemistry on electrodeposition of chromium

  • S. Survilienė
  • O. Nivinskienė
  • A. Češunienė
  • A. Selskis


This work provides a new insight into the interaction of urea with formate during the chromium electrodeposition from a sulphate-based Cr(III) solution. The influence of solution chemistry on chromium electrodeposition in a Cr(III) bath containing sodium formate and urea as complexing agents was studied by FT-IR, XPS and AFM. The results show that good quality Cr coatings may be obtained only in those cases when the secondary ligand with the carbamidic group predominates over urea in the electrolyte. This suggests that electrodeposition of good quality chromium deposit is possible due to the formation of active chromium–carbamid complexes [Cr(carbamid)n(H2O)6-n ]3+. These complexes delay the formation of the stable oligomeric species, and thus provide a prolonged working lifetime in the Cr(III) formate-urea electrolyte.

Key words:

current efficiency infrared spectra Trivalent chromium electrodeposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Dr V. Jasulaitiene for assisting in the experimental work using the XPS method.


  1. 1.
    Ibrahim S.K., Gawne D.T., Watson A., (1998) Trans. IMF 76(4): 156Google Scholar
  2. 2.
    Ibrahim S.K., Watson A., Gawne D. (1997) Trans. IMF, 75(5): 181Google Scholar
  3. 3.
    J.-Y. Hwang, Plat. And Surf. Fin. 78 (1991) 118 MayGoogle Scholar
  4. 4.
    El-Sharif M., Ma S., Chisholm C.U., (1995) Trans. IMF 73(1): 19Google Scholar
  5. 5.
    El-Sharif M., Ma S., Chisholm C.U., (1999) Trans. IMF 77(4): 139Google Scholar
  6. 6.
    Song Y.B., Chin D.-T., (2002) Electrochim. Acta 48: 349CrossRefGoogle Scholar
  7. 7.
    Vykhodtseva L.N., Edigaryan A.A., Lubnin E.N., Polukarov Yu.M., Safonov V.A., (2004) Russian J. Electrochem. 40: 387CrossRefGoogle Scholar
  8. 8.
    Mandich N.V., (1997) Plating & Surf. Finishing 84(5): 108Google Scholar
  9. 9.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1978) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Minneapolis MN, pp.190Google Scholar
  10. 10.
    LM Yudi, AN Barruzzi and UM Solis, (1988) J. Appl. Electrochem. 18: 417CrossRefGoogle Scholar
  11. 11.
    Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley and Sons, Inc. 1986)Google Scholar
  12. 12.
    Peeling J., Hruska F.E., McKinnon D.M., Chauhan M.S., McIntyre N.S., (1978) Can. J. Chem. 56: 2405CrossRefGoogle Scholar
  13. 13.
    Peeling J., Hruska F.E., McIntyre N.S. (1978) Can. J. Chem. 56: 1555CrossRefGoogle Scholar
  14. 14.
    Clark D.T., Dilks A., (1976) J. Polym. Sci., Polym. Chem. Educ. 14: 533CrossRefGoogle Scholar
  15. 15.
    Brewis D.M., Briggs D., (1981) Polymer 22: 7CrossRefGoogle Scholar
  16. 16.
    Vykhotseva L.N., Edigaryan A.A., Lubnin E.N., Polukarov Yu.M., Safonov VA, (2004) Russian J. Electrochem. 40: 435Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. Survilienė
    • 1
  • O. Nivinskienė
    • 1
  • A. Češunienė
    • 1
  • A. Selskis
    • 1
  1. 1.Institute of ChemistryVilniusLithuania

Personalised recommendations