Journal of Applied Electrochemistry

, Volume 36, Issue 4, pp 441–448 | Cite as

Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium

  • G. Kéranguéven
  • C. Coutanceau
  • E. Sibert
  • F. Hahn
  • J- M. Léger
  • C. Lamy


The electrooxidation of DME was studied at a bulk platinum electrode. It was shown that the DME adsorption was a slow step in the overall oxidation reaction. The DME adsorption is potential dependent in the hydrogen region of platinum and independent in the double layer region. From low potential scan rate voltammetry and DME stripping experiments, it was shown that the DME oxidation mechanism occurred via several reaction paths. At low potentials, DME oxidation leads to the existence of a positive current plateau. “In situ” Infrared Reflectance Spectroscopy experiments were carried out to identify the intermediate and reaction products of DME adsorption and oxidation at different potentials. COL (linearly bonded CO), COB (bridge bonded CO), adsorbed COOH species and CO2 were detected. From these electrochemical and spectro-electrochemical results, it was proposed that some adsorbed DME was hydrolysed and directly oxidized to CO2 or HCOOH species and some partially blocked platinum sites at the surface forming Pt–CHO and/or Pt–CO. Then, as soon as platinum becomes able to activate water, a bifunctionnal mechanism occurs to form either HCOOH or CO2 again following two different reaction paths.


dimethylether electrooxidation fuel cell in situ Infrared Reflectance Spectroscopy platinum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shukla A.K., Jackson C.L., Scott K. and Raman R.K. (2002). Electrochim. Acta 47: 3401CrossRefGoogle Scholar
  2. 2.
    Aricò A.S., Baglio V., Modica E., Di Blasi A. and Antonucci V.(2004). Electrochem. Comm. 6: 164CrossRefGoogle Scholar
  3. 3.
    Dillon R., Srinivasan S., Aricò A.S., Antonucci V.(2004). J. Power Sources 127: 112CrossRefGoogle Scholar
  4. 4.
    Gogel V., Frey T., Zhu Yongsheng, Friedrich K.A., Jörissen L. and Garche J.(2004). J. Power Sources 127: 172CrossRefGoogle Scholar
  5. 5.
    Vigier F., Coutanceau C., Perrard A., Belgsir E.M. and Lamy C.(2004). J. Appl. Electrochem. 34: 439CrossRefGoogle Scholar
  6. 6.
    Vigier F., Coutanceau C., Hahn F., Belgsir E.M. and Lamy C.(2004). J. Electroanal. Chem. 563: 81CrossRefGoogle Scholar
  7. 7.
    Y. Tsutsumi, T. Moriyama and S. Kajitani, in V. W. Wong (MIT) (Ed.), Proceeding of the 2000 Spring Technical Conference of The ASME Internal Combustion Engine Division, ICE Vol. 34–3 (2000), pp 58–63Google Scholar
  8. 8.
    Müller J.T. and Urban P.M., Hölderich W.F., Colbow K.M., Zhang J., Wilkinson D.P.(2000). J. Electrochem. Soc. 147: 4058CrossRefGoogle Scholar
  9. 9.
    Tsutsumi Y., Nakano Y., Kajitani S. and Yamasita S.(2002). Electrochemistry 70: 984Google Scholar
  10. 10.
    Mench M.M., Chance H.M. and Wang C.Y.(2004). J. Electrochem. Soc. 151: A144CrossRefGoogle Scholar
  11. 11.
    Aricò A.S., Cretì P., Modica E., Monforte G., Baglio V. and Antonucci V.(2000). Electrochim. Acta. 45: 4319CrossRefGoogle Scholar
  12. 12.
    Coutanceau C., Rakotondrainibe A.F., Lima A., Garnier E., Pronier S., Léger J.-M. and Lamy C.(2004). J. Appl. Electrochem. 34: 61CrossRefGoogle Scholar
  13. 13.
    Kim Y.J., Choi W.C., Woo S.I. and Hong W.H.(2004). Electrochim. Acta 49: 3227CrossRefGoogle Scholar
  14. 14.
    Zhou W.J., Zhou Z.H., Song S.Q., Li W.Z., Sun G.Q., Tsiakaras P. and Xin Q.(2003). Appl. Catal. B: Environ. 46: 273CrossRefGoogle Scholar
  15. 15.
    Zhou W.J., Li W.Z., Song S.Q., Zhou Z.H., Jiang L.H., Sun G.Q., Xin Q., Poulianitis K., Kontou S. and Tsiakaras P.(2004). J. Power Sources 131: 217CrossRefGoogle Scholar
  16. 16.
    Bewick A., Kunimatsu K., Pons B., Pons J.W. and Russell J.W.(1984). J. Electroanal. Chem. 160: 47CrossRefGoogle Scholar
  17. 17.
    Iwasita T.(2002). Electrochim. Acta 47: 3663CrossRefGoogle Scholar
  18. 18.
    Watanabe M. and Motoo S.(1975). J. Electroanal. Chem. 60: 275CrossRefGoogle Scholar
  19. 19.
    Gasteiger H.A., Markovic N., Ross P.N. and Cairns E.J. (1994). J. Electrochem. Soc. 141: 1795CrossRefGoogle Scholar
  20. 20.
    Piersma B.J. and Gileadi E.(1966). In: Bockris JO’M. (eds), Modern Aspects of Electrochemistry, Vol. 4, Ch. 2. Butterworths, London, pp. 102Google Scholar
  21. 21.
    J.-M. Léger, PhD thesis (University of Poitiers, France, 1982).Google Scholar
  22. 22.
    Coutanceau C., Croissant M.J., Napporn T. and Lamy C.(2000). Electrochim. Acta 46: 579CrossRefGoogle Scholar
  23. 23.
    Papoutsis A., Léger J.M. and Lamy C.(1987). J. Electroanal. Chem. 234: 315CrossRefGoogle Scholar
  24. 24.
    Kabbabi A., Faure R., Durand R., Beden B., Hahn F., Léger J.-M. and Lamy C.(1998). J. Electroanal. Chem. 444: 41CrossRefGoogle Scholar
  25. 25.
    J.Müller, P. Urban, R. Wezel, K.M. Colbow and J. Zhang, US Patent no US 6,777,116 B1, Aug. 17. 2004.Google Scholar
  26. 26.
    Waszczuk P., Wieckowski A., Zelenay P., Gottesfeld S., Coutanceau C., Léger J.-M. and Lamy C.(2001). J. Electroanal. Chem. 511: 55CrossRefGoogle Scholar
  27. 27.
    Napporn W.T., Laborde H., Léger J.-M. and Lamy C.(1996). J. Electroanal. Chem. 404: 153CrossRefGoogle Scholar
  28. 28.
    Beden B., Lamy C., Bewick A. and Kunimatsu K.(1981). J. Electroanal. Chem. 121: 343Google Scholar
  29. 29.
    Kunimatsu K.(1982). J. Electroanal. Chem. 140: 205CrossRefGoogle Scholar
  30. 30.
    B. Beden, F. Hahn, S. Juanto, C. Lamy and J.-M. Léger, ␣J.␣Electroanal. Chem. 225 (1987)Google Scholar
  31. 31.
    Rasch B. and Iwasita T.(1990). Electrochim. Acta 35: 989CrossRefGoogle Scholar
  32. 32.
    El Chbihi M., Takky D., Hahn F., Huser H., Léger J.-M. and Lamy C. (1999). J. Electroanal. Chem. 463: 63CrossRefGoogle Scholar
  33. 33.
    Asselin P., Soulard P., Alikhani M.E. and Perchard J.P. (1999). Chem. Phys. 249: 73CrossRefGoogle Scholar
  34. 34.
    Schriver-Mazzuoli L., Coanga J.M., Schriver A. and Ehrenfreund P.(2002). Vibrational Spectro 30: 245CrossRefGoogle Scholar
  35. 35.
    Iwasita T. and Pastor E.(1994). Electrochim. Acta 39: 531CrossRefGoogle Scholar
  36. 36.
    Chang S.C., Leung L.W. and Weaver M.J.(1990). J. Phys. Chem. 94: 6013CrossRefGoogle Scholar
  37. 37.
    Iwasita T., Rasch B., Cattaneo E. and Vielstich W.(1989). Electrochim. Acta 34: 1073CrossRefGoogle Scholar
  38. 38.
    Lamy C., Lima A., LeRhun V., Delime F., Coutanceau C. and Léger J.-M. (2002). J. Power Sources 105: 283CrossRefGoogle Scholar
  39. 39.
    Rice C., Tong Y.Y., Oldfield E., Wieckowski A., Hahn F., Gloaguen F., Léger J.-M. and Lamy C.(2000). J. Phys. Chem. B 104: 5803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. Kéranguéven
    • 1
  • C. Coutanceau
    • 1
  • E. Sibert
    • 1
  • F. Hahn
    • 1
  • J- M. Léger
    • 1
  • C. Lamy
    • 1
  1. 1.UMR-CNRS 6503, Université de PoitiersPoitiers cedexFrance

Personalised recommendations