Journal of Applied Electrochemistry

, Volume 36, Issue 4, pp 433–439 | Cite as

Oxidation of p-methoxyphenol on SnO2–Sb2O5 electrodes: Effects of electrode potential and concentration on the mineralization efficiency

  • C. Borrás
  • C. Berzoy
  • J. Mostany
  • B. R. Scharifker


The oxidation of p-methoxyphenol in aqueous solution on antimony-doped tin oxide has been studied, and the effects of applied potential and initial PMP concentration upon the oxidation rate have been identified. The concentration decay of PMP during its electrooxidation follows first-order reaction kinetics. Analysis solution during electrolysis using UV–Vis spectroscopy revealed that under some experimental conditions partial oxidation of PMP occurs. The principal products were p-benzoquinone and aliphatic (maleic and oxalic) acids. The Faradaic efficiencies for oxidation at different applied potentials were determined from the UV–Vis spectra obtained. It is shown that production of CO2 was very low at potentials below 2.3 V with respect to the saturated calomel electrode, and that at more positive potentials mineralization to CO2 decreased as the concentration of PMP in solution increased.

Key words

electrocatalysis metal oxide anode oxidation of organics p-methoxyphenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Universidad Simón Bolívar and FONACIT for financial support, also to Michele Milo for managerial and technical assistance and the members of the Electrochemistry Group at USB for discussions.


  1. 1.
    Sharifian H.D., Kirk D.W. (1986). J. Electrochem. Soc. 133: 921CrossRefGoogle Scholar
  2. 2.
    Gattrell M., Kirk D.W. (1993). J. Electrochem. Soc. 140: 1534CrossRefGoogle Scholar
  3. 3.
    Comninellis Ch., Pulgarin C. (1993). J. Appl. Electrochem. 23: 108CrossRefGoogle Scholar
  4. 4.
    Hwang B.J., Lee K.L. (1996). J. Appl. Electrochem. 26: 153CrossRefGoogle Scholar
  5. 5.
    Gattrell M., Kirk D.W. (1993). J. Electrochem. Soc. 140: 903CrossRefGoogle Scholar
  6. 6.
    Popovic D., Johnson D.C. (1998). Anal. Chem. 70: 468CrossRefGoogle Scholar
  7. 7.
    Tahar N.B., Savall A. (1999). J. Appl. Electrochem. 29: 277CrossRefGoogle Scholar
  8. 8.
    Jonhson D.C., Feng J., Houk L.L. (2000). Electrochim. Acta 46: 323CrossRefGoogle Scholar
  9. 9.
    Polcado A.M., Palmas S., Renoldi F., Mascia M. (2000). Electrochim. Acta 46: 389CrossRefGoogle Scholar
  10. 10.
    S. Stucki, R. Kozt, B. Carcer and W. Sutter, J. Appl. Electrochem. 21 (1991)99CrossRefGoogle Scholar
  11. 11.
    Fleszar B., Ploszynska J. (1985). Electrochim. Acta 30: 31CrossRefGoogle Scholar
  12. 12.
    Comninellis Ch., Pulgarin C. (1991). J. Appl. Electrochem. 21: 703CrossRefGoogle Scholar
  13. 13.
    Vitt J.E., Jonhson D.C. (1992). J. Electrochem. Soc. 139: 774CrossRefGoogle Scholar
  14. 14.
    Jüttner K., Galla U., Schmieder H. (2000). Electrochim. Acta 45: 2575CrossRefGoogle Scholar
  15. 15.
    Ureta-Zañartu M.S., Bustos P., Diez M.C., Mora M.L., Gutierrez C. (2001). Electrochim. Acta 46: 2545CrossRefGoogle Scholar
  16. 16.
    Iniesta J., Michaud P.A., Panizza M., Cerisola G., Aldaz A., Comninellis Ch. (2003). Electrochim. Acta 46: 3573CrossRefGoogle Scholar
  17. 17.
    Polcaro A.M., Vacca A., Palmas S., Mascia M. (2003). J. Appl. Electrochem. 33: 885CrossRefGoogle Scholar
  18. 18.
    Codognoto L., Machado S.A.S., Avaca L.A. (2003). J. Appl. Electrochem. 33: 951CrossRefGoogle Scholar
  19. 19.
    Rodrigo M.A., Michaud P., Duo I., Panizza M., Cerisola G., Comninellis Ch. (2001). J. Electrochem. Soc. 148: D60CrossRefGoogle Scholar
  20. 20.
    Cañizares P., Garcia-Gomez J., Saez C., Rodrigo M.A (2003). J. Appl. Electrochem. 33: 917CrossRefGoogle Scholar
  21. 21.
    Cañizares P., Garcia-Gomez J., Lobato J., Rodrigo M.A. (2003). Ind. Eng. Chem. Res. 42: 956CrossRefGoogle Scholar
  22. 22.
    Roogers J.D., Jedral W., Bunce N.J. (1999). Environ. Sci. Technol. 33: 1453CrossRefGoogle Scholar
  23. 23.
    Tahar N.B., Savall A. (1998). J. Electrochem. Soc. 145: 3427CrossRefGoogle Scholar
  24. 24.
    Simond O., Schaller V., Comninellis Ch. (1997). Electrochim. Acta 42: 2009CrossRefGoogle Scholar
  25. 25.
    Foti G., Gandini D., Comninellis Ch., Perret A., Haenni W. Electrochem. Solid State Lett. 2(1999) 228CrossRefGoogle Scholar
  26. 26.
    Comninellis Ch. (1994). Electrochim. Acta 39: 1857CrossRefGoogle Scholar
  27. 27.
    Borras C., Laredo T., Mostany J., Scharifker B.R. (2004). Electrochim. Acta 49: 641CrossRefGoogle Scholar
  28. 28.
    Borras C., Laredo T., Scharifker B.R. (2004). Electrochim. Acta 48: 2775CrossRefGoogle Scholar
  29. 29.
    Iniesta J., Micahud P.A., Pamizza M., Cerisola G., Aldaz A., Comninellis Ch. (2001). Electrochim. Acta 46: 3573CrossRefGoogle Scholar
  30. 30.
    Wu Z., Zhou M. (2001). Environ Sci Technol. 35: 2698CrossRefGoogle Scholar
  31. 31.
    Hoffman M.R., Martin S.T., Choi W., Bahnemann D.W. (1995). Chem Rev. 95: 69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. Borrás
    • 1
  • C. Berzoy
    • 1
  • J. Mostany
    • 1
  • B. R. Scharifker
    • 1
  1. 1.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations