Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 3, pp 339–345 | Cite as

Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells

  • Chaojie Song
  • Mohammad Khanfar
  • Peter G. Pickup
Article

Abstract

Pt black and PtRu black fuel cell anodes have been modified with Mo oxide and evaluated in direct methanol, formaldehyde and formic acid fuel cells. Mo oxide deposition by reductive electrodeposition from sodium molybdate or by spraying of the fuel cell anode with aqueous sodium molybdate resulted in similar performance gains in formaldehyde cells. At current densities below ca. 20 mA cm−2, cell voltages were 350–450 mV higher when the Pt catalyst was modified with Mo oxide, but these performance gains decreased sharply at higher current densities. For PtRu, voltage gains of up to 125 mV were observed. Modification of Pt and PtRu back catalysts with Mo oxide also significantly improved their activities in direct formic acid cells, but performances in direct methanol fuel cells were decreased.

Keywords

electrocatalysis formaldehyde formic acid fuel cell methanol molybdenum oxide platinum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Projects Grant, by Memorial University and by H Power Corp.

References

  1. 1.
    C. Lamy, J.M. Leger and S. Srinivasan, in Modern Aspects of Electrochemistry, 34 (2001) pp. 53–118Google Scholar
  2. 2.
    2. Wang J.T., Lin W.F., Weber M., Wasmus S., Savinell R.F., (1998) Electrochim. Acta 43:3821CrossRefGoogle Scholar
  3. 3.
    3. Muller J.T., Urban P.M., Holderich W.F., Colbow K.M., Zhang J., Wilkinson D.P. (2000) J. Electrochem. Soc., 147:4058CrossRefGoogle Scholar
  4. 4.
    4. Lamy C., Belgsir E.M., Leger J.M., (2001) J. Appl. Electrochem. 31: 799CrossRefGoogle Scholar
  5. 5.
    5. Savadogo O., Yang X., (2001) J. Appl. Electrochem. 31:787CrossRefGoogle Scholar
  6. 6.
    6. Qi Z.G., Hollett M., Attia A., Kaufman A., (2002) Electrochem. Solid State. Lett. 5:A129CrossRefGoogle Scholar
  7. 7.
    7. Rice C., Ha R.I., Masel R.I., Waszczuk P., Wieckowski A., Barnard T., (2002) J. Power Sources 111:83CrossRefGoogle Scholar
  8. 8.
    8. Shropshire J.A., (1965) J. Electrochem. Soc. 112:465CrossRefGoogle Scholar
  9. 9.
    9. Olivi P., Bulhoes L.O.S., Leger J.-M., Hahn F., Beden B., Lamy C., (1994) J. electroanal. Chem. 370: 241CrossRefGoogle Scholar
  10. 10.
    10. Nakabayashi S., Yagi I., Sugiyama N., Tamura K., Uosaki K. (1997) Surface Science 386: 82CrossRefGoogle Scholar
  11. 11.
    11. ten Kortenaar M.V., Kolar Z.I., de Goeij J.J.M., Frens G., (2001) J. Electrochem. Soc. 148:E327CrossRefGoogle Scholar
  12. 12.
    12. Rice C., Ha S., Masel R.I., Wieckowski A., (2003) J. Power Sources 115:229CrossRefGoogle Scholar
  13. 13.
    13. Li W.S., Tian L.P., Huang Q.M., Li H., Chen H.Y., Lian X.P., (2002) J. Power Sources 104:281CrossRefGoogle Scholar
  14. 14.
    14. Wang H.S., (2002) Acta Chimica Sinica 60:606Google Scholar
  15. 15.
    15. Wang Y., Rachjini E.R., Cruz G., Zhu Y., Ishikawa Y., Colucci J.A., Cabrera C.R., (2001) J. Electrochem. Soc., 148:C222CrossRefGoogle Scholar
  16. 16.
    16. Lee S.A., Park K.W., Choi J.H., Kwon B.K., Sung Y.E., (2002) J Electrochem. Soc. 149:A1299CrossRefGoogle Scholar
  17. 17.
    17. Samjeske G., Wang H.S., Loffler T., Baltruschat H., (2002) Electrochim. Acta 47:3681CrossRefGoogle Scholar
  18. 18.
    18. Ball S., Hodgkinson A., Hoogers G., Maniguet S., Thompsett D., Wong B., (2002) Electrochem. Solid. State. Lett. 5:A31CrossRefGoogle Scholar
  19. 19.
    19. Anderson A.B., Grantscharova E., Seong S., (1996) J. Electrochem. Soc. 143:2075CrossRefGoogle Scholar
  20. 20.
    20. Lima A., Coutanceau C., Leger J.M., Lamy C., (2001) J. Appl. Electrochem. 31:379CrossRefGoogle Scholar
  21. 21.
    21. Song C., Pickup P.G., (2004) J. Appl. Electrochem. 34:1065CrossRefGoogle Scholar
  22. 22.
    22. Ren X.M., Springer T.E., Zawodzinski T.A., Gottesfeld S., (2000) J. Electrochem. Soc. 147: 466CrossRefGoogle Scholar
  23. 23.
    23. Rhee Y.W., Ha S.Y., Masel R.I., (2003) HGJGKHJG. J. Power Sources 117: 35CrossRefGoogle Scholar
  24. 24.
    24. Housmans T.H.M., Koper M.T.M., (2003) J. Phys. Chem. B. 107:8557CrossRefGoogle Scholar
  25. 25.
    25. Machida K., Enyo M., (1990) J. Electrochem. Soc. 137: 1169CrossRefGoogle Scholar
  26. 26.
    26. Wang B., Dong S., (1994) J. Electroanal. Chem. 379: 207CrossRefGoogle Scholar
  27. 27.
    27. Kosminsky L., Bertotti M., (1999) J. Electroanal. Chem. 471: 37CrossRefGoogle Scholar
  28. 28.
    28. Mukerjee S., Urian R.C., (2002) Electrochim. Acta 47: 3219CrossRefGoogle Scholar
  29. 29.
    29. Iwasita T., (2002) Electrochim. Acta 47: 3663CrossRefGoogle Scholar
  30. 30.
    30. Wang X., Hu J.M., Hsing I.M., (2004) J. Electroanal. Chem. 562: 73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Chaojie Song
    • 1
  • Mohammad Khanfar
    • 1
  • Peter G. Pickup
    • 1
  1. 1.Department of ChemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations