Journal of Applied Electrochemistry

, Volume 35, Issue 12, pp 1283–1292 | Cite as

Cleavage of alkenes by anodic oxidation

  • U.-St. Bäumer
  • H.J. Schäfer


Oxidative cleavage of olefinic double bonds to carboxylic acids, aldehydes or ketones is one of the important reactions in organic synthesis. Ozonolysis is mostly applied for this purpose, however, high costs for safety precautions in technical scale conversions demand alternatives. For this purpose different electrochemical methods are investigated. In the direct oxidation of cyclohexene at a platinum or graphite anode no cleavage occurs, but substituted and rearranged products are obtained. At the boron doped diamond electrode (BDDE) aliphatic olefins with high oxidation potential are not converted. Electrochemical ozonolysis by oxidation of water to ozone at the lead dioxide electrode leads to carboxylic acids as cleavage products in high material yield but low current yield. Anodic bromo-formyloxylation followed by an anodic cleavage provides a two step conversion of cyclohexene to hexane-1,6-dial derivatives. Thereby anodic discharge of bromide in formic acid leads to (2-bromocyclohexyl)-formate, which is converted to cyclohexane-1,2-diol and the major part of potassium bromide is recovered for the next cycle. This electrochemical conversion appears to be an attractive alternative to chemical oxidations with oxygen and catalysts or with hydrogen peroxide. The diol is cleaved in high yield to hexane-1,6-dial or its acetal either directly or indirectly with periodate as mediator.


anodic bromo-formyloxylation anodic glycol cleavage anodic ozonolysis direct alkene oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported through the Arbeitsgemeinschaft Industrieller Forschungsvereinigungen (AIF-project No 13227N/1) by the Bundeswirtschaftsminister. We thank Dr. W. Haenni, CSEM for a BDD/Si-electrode, Metakem for a BDD/Ti-electrode and the BASF AG for samples of supporting electrolytes.


  1. 1.
    Bailey P.S., (1978). Ozonization in Organic Chemistry. Academic Press, New YorkGoogle Scholar
  2. 2.
    Lee D.G. and Chen T., (1991). Comprehensive Organic Synthesis. Pergamon Press, Oxford, p. 574Google Scholar
  3. 3.
    Brown E., Deroye C. and Touet T., (1998). Tetrahedron 9:1605CrossRefGoogle Scholar
  4. 4.
    Defacqz N., Touillaux R., Cordi A. and Marchand-Brynaert J., (2001). J. Chem Soc.Perkin Trans. 1:2632CrossRefGoogle Scholar
  5. 5.
    Capon R.J., Jenkins A., Rooney F. and Ghisalberti E.L., (2001). J. Nat. Prod. 64:638CrossRefPubMedGoogle Scholar
  6. 6.
    K. Weissermel and H.J. Arpe, ‘Industrielle Organische Chemie’, 5th ed., (VCH, 1998), p.172, 229.Google Scholar
  7. 7.
    Schober B.D., (1996). Chimica Oggi – Chemistry Today 13:21Google Scholar
  8. 8.
    C.F. Goebel, Emery Ind., US 2813113, Chem. Abstr. 52 (1958) 2431Google Scholar
  9. 9.
    Griffith W.P., Shoair A.G.and Suriaatmaja M., (2000). Synth. Commun. 30:3091CrossRefGoogle Scholar
  10. 10.
    Kawatsura M., Uozumi Y., Ogasawara M. and Hayashi T., (2000). Tetrahedron 56:2247CrossRefGoogle Scholar
  11. 11.
    Antonelli E., D’Aloisio R., Gambaro M., Fiorani T. and Venturello C., (1998). J. Org. Chem. 63:7190CrossRefPubMedGoogle Scholar
  12. 12.
    Henry J.R. and Weinreb S.M., (1993). J.Org. Chem. 58:4745CrossRefGoogle Scholar
  13. 13.
    Arney B.E., Jr., Wilcox E., Campbell M.O. and Gutierrez M.O., (1993). J. Org. Chem. 58:6126CrossRefGoogle Scholar
  14. 14.
    Rossiter B.T., Katsuki T. and Sharpless K.B., (1981). J.Am.Chem. Soc. 103:464CrossRefGoogle Scholar
  15. 15.
    Huang B., Khrapov M., Hansen K.C., Idoux J.P. and Gupton J.T., (1995). Synth. Commun. 25:2709CrossRefGoogle Scholar
  16. 16.
    Carlsen P.H.J., Katsuki T., Martin V.S. and Sharpless K.B., (1981). J. Org. Chem. 46:3936CrossRefGoogle Scholar
  17. 17.
    Sato K., Aoki M., Ogawa M., Hashimoto T., Panyella D. and Noyori R., (1997). Bull. Chem. Soc. Jpn. 70:905CrossRefGoogle Scholar
  18. 18.
    Muryashi S.I., Suito T., Naota T., Kumobayashi H. and Akutagawa S., (1991). Tetrahedron Lett. 32:5991CrossRefGoogle Scholar
  19. 19.
    K. Kaneda, S. Haruna, T. Imanaka and K. Kawamoto, J. Chem. Soc., Chem. Commun. (1990) 1467Google Scholar
  20. 20.
    Bäumer U.S. and Schäfer H.J., (2003). Electrochim. Acta 48:489CrossRefGoogle Scholar
  21. 21.
    Wabner D.W., Fritz H.P., Missol D., Huß R. and Hindelang F., (1976). Z. Naturforsch. 31b:39Google Scholar
  22. 22.
    Gupton J.T. and Dale D.E., (1981). Synth. Commun. 11:571CrossRefGoogle Scholar
  23. 23.
    Nikishin G.I., Elinson M.N. and Makhova I.V., (1988). Tetrahedron Lett. 29:1603CrossRefGoogle Scholar
  24. 24.
    Neverov A.A. and Brown R.S., (1998). J. Org. Chem. 63:5977CrossRefPubMedGoogle Scholar
  25. 25.
    Autorenkollektiv, ‘Organikum’, 18. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin (1990) p.258Google Scholar
  26. 26.
    Malanga C., Mannucci S. and Lardicci L., (1998). Tetrahedron 54:1021CrossRefGoogle Scholar
  27. 27.
    Sharghi H., Niknam K. and Pooyan M., (2001). Tetrahedron 57:6057CrossRefGoogle Scholar
  28. 28.
    Niizato H., Ueno Y. and Takemura S., (1972). Chem. Pharm. Bull. 20:2707Google Scholar
  29. 29.
    Iranpoor N., Firouzabadi H., Maryam C. and Jafari A.A., (2002). Tetrahedron 28:7037CrossRefGoogle Scholar
  30. 30.
    Shono T., Matsumura Y., Hashimoto T., Hibino K., Hamaguchi H. and Aoki T. (1975). J.Am. Chem. Soc. 97:2546CrossRefGoogle Scholar
  31. 31.
    Shono T., Hamaguchi H., Matsumura Y. and Yoshida K., (1977). Tetrahedron Lett. 41:3625CrossRefGoogle Scholar
  32. 32.
    Griesbaum K., Jung I.C. and Mertens H., (1990). J. Org. Chem. 55:6024CrossRefGoogle Scholar
  33. 33.
    Zhong Y.-L. and Shing T.K.M., (1997). J. Org. Chem. 62:2622CrossRefPubMedGoogle Scholar
  34. 34.
    Griesbaum K. and Neumeister J., (1982). Chem. Ber.115:2697CrossRefGoogle Scholar
  35. 35.
    Y.N. Ogibim, A.I. Ilovaisky and G.I. Nikishin, J. Org. Chem. 61 (1996) 3256; Electrochim. Acta. 42 (1997) 1933.Google Scholar
  36. 36.
    Torii S., Inokuchi T. and Oi R., (1982). J. Org. Chem. 47:47CrossRefGoogle Scholar
  37. 37.
    Favier R., Freppel C., Richer J.-C. and Zador M., (1971). Can. J. Chem. 49:2590CrossRefGoogle Scholar
  38. 38.
    A.R. Blake, J.G. Sunderland and A.T. Kuhn, J. Chem. Soc. (A). (1969) 3015.Google Scholar
  39. 39.
    M. Fleischmann, D. Pletcher and G.M.Race, J. Chem. Soc. (B). (1970)174.Google Scholar
  40. 40.
    E. Steckhan and C.Kandzia, Synlett (1992) 139.Google Scholar
  41. 41.
    Torii S., Uneyama K., Tanaka H., Yamanaka T., Yasuda T., Ono M. and Kohmoto Y., (1981). J. Org. Chem. 46:3312CrossRefGoogle Scholar
  42. 42.
    Shen Y., Atobe M., Li W., and Nonaka T., (2003). Electrochim. Acta 48:1041CrossRefGoogle Scholar
  43. 43.
    Torii S., Uneyama K., Ono M., Tazawa H. and Matsunami S., (1979). Tetrahedron Lett. 48:4661CrossRefGoogle Scholar
  44. 44.
    Möller K.C. and Schäfer H.J., (1996). Electrochim. Acta 42:1971CrossRefGoogle Scholar
  45. 45.
    Gandini D., Michaud P.A., Duo I., Maké E., Haenni W., Perret A. and Comminellis Ch., (1999). New Diamond Front. Technol. 9:303Google Scholar
  46. 46.
    H. Pütter, A. Weiper-Idelmann and C. Merck, DE 19911746 A1, Chem Abstr. 133 (2000) 244253.Google Scholar
  47. 47.
    H. Pütter and C. Merck, DE 10045664 A1, Chem Abstr. 136 (2002) 253952.Google Scholar
  48. 48.
    Ch. Reufer and Th.Lehmann, GDCh-Jahrestagung, Fachgruppe Angewandte Elektrochemie, München 2003, PosterGoogle Scholar
  49. 49.
    Imamura A. and Hirao K., (1979). Bull. Chem. Soc. Jpn. 52:287CrossRefGoogle Scholar
  50. 50.
    Beer H.B., (1980). J. Electrochem. Soc. 127:303CCrossRefGoogle Scholar
  51. 51.
    Trasatti S., (1990). Croat. Chem. Acta 63:313Google Scholar
  52. 52.
    Schäfer H.J., (1987). Top. Curr. Chem. 142:102Google Scholar
  53. 53.
    M. Gnann, D.W. Wabner and W. Tillmetz, DE 3432684, Chem. Abstr. 104 (1986) 195543Google Scholar
  54. 54.
    Pavlov D. and Monahov B., (1996). J. Electrochem. Soc. 143:3616CrossRefGoogle Scholar
  55. 55.
    Monahov B. and Pavlov D., (1993). J. Appl. Electrochem. 23:1244CrossRefGoogle Scholar
  56. 56.
    Wabner D.W. and Grambow C., (1985). J. Electroanal. Chem. 195:95CrossRefGoogle Scholar
  57. 57.
    Stucki S., Theis G., Kötz R., Devantay H. and Christ H.J., (1985). J. Electrochem. Soc. 132:367CrossRefGoogle Scholar
  58. 58.
    Stucki S., Baumann H., Christen H.J. and Kötz R., (1987). J. Appl. Electrochem. 17:773CrossRefGoogle Scholar
  59. 59.
    Poullien P., Minko R., Verniette M. and Martinett P., (1980). Electrochim. Acta. 25:711CrossRefGoogle Scholar
  60. 60.
    Shono T. and Ikeda A., (1972). J.Am.Chem.Soc. 94:7892CrossRefGoogle Scholar
  61. 61.
    Dubois J.E., Garnier F. and Villard H., (1965). Tetrahedron Lett. 17:1277Google Scholar
  62. 62.
    Haines A.H. (1991). Comprehensive Organic Synthesis. Pergamon, Oxford, p. 437Google Scholar
  63. 63.
    D.E.J.E. deVos, S.M.A. de Wildeman and P.A. Jacobs, EP 0970951 A1, Chem. Abstr. 132 (2000) 64159.Google Scholar
  64. 64.
    M. Beller, C. Döbler and G. Mehltretter, DE 19920038 A1, Chem Abstr. 133 (2000) 323285.Google Scholar
  65. 65.
    Herrmann W.A., Fischer R.W. and Marz D.W., (1991). Angew. Chem. 30:1638CrossRefGoogle Scholar
  66. 66.
    Org. Synth. Coll. Vol.III, 217 (1953)Google Scholar
  67. 67.
    (a) V.F. Pfeifer, V.E. Sohns, H.F. Conway, E.B. Lancaster, S. Dabic and E.L. Griffin, Ind. Eng. Chem. 52 (1960) 201.Google Scholar
  68. 68.
    Yoshiyama A., Nonaka T., Baizer M.M. and Chou T.C., (1985). Bull. Chem. Soc. Jpn. 58:201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Organisch-Chemisches Institut der Universität MünsterMünsterGermany

Personalised recommendations