Journal of Applied Electrochemistry

, Volume 36, Issue 2, pp 239–247 | Cite as

Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures

  • Jun-ichi Ozaki
  • Kiyomi Nozawa
  • Kunitaka Yamada
  • Yoshinori Uchiyama
  • Yoko Yoshimoto
  • Atsuya Furuichi
  • Tomonari Yokoyama
  • Asao Oya
  • L.J. Brown
  • J.D. Cashion


The structure, physicochemical properties and oxygen reduction abilities of carbons prepared by the carbonization of mixtures of ferrocene and poly(furfuryl alcohol) were studied. X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) studies revealed that the carbons thus prepared consisted of two components; amorphous and turbostratic shell-like components. The fraction, f sharp, obtained by the analysis of the (002) peak in XRD was found to be a parameter that represented the degree of formation of the shell-like components. The formation of the shell-like components induced an increase in the mesopore volumes. Electrical conductivity increased exponentially with f sharp, which indicated that the conduction process was governed by a percolation process of the conductive shell-like components. The amount of CO-desorption by O2-TPD technique showed a maximum desorption at f sharp=0.3, and the further development in the sharp component led to a decrease in the CO-desorption. Mössbauer spectroscopy technique revealed the presence of α-Fe, γ-Fe, Fe1-x O and Fe3C in the prepared carbons, which were soluble species to acids. The oxygen reduction activity was studied in a oxygen saturated sulfuric acid solution by rotating disk electrode voltammetry. The oxygen reduction potential varied with f sharp; initially it increased by f sharp=0.3 and then it decreased at higher f sharp values. This behavior was similar to that of CO-desorption, which meant the presence of an adequate degree of the development of the shell-like structure for maximizing oxygen adsorption. Removal of the surface metal component from the carbons by acid-washing resulted in no decrease in the oxygen reduction activities of the carbons. The nature of the active sites on the carbon materials is discussed.


catalytic carbonization ferrocene oxygen reduction poly(furfuryl alcohol) shell-like carbon turbostratic carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was conducted as a project of the Research and Development of Polymer Electrolyte Fuel Cell, entrusted by the New Energy and Industrial Technology Development Organization (NEDO), (2002–2004 fiscal years). LJB and JDC received a grant from the Australian Research Council to conduct the Mössbauer measurements.


  1. 1.
    Franklin R.E. (1951). Proc. Roy. Soc. London A209:196Google Scholar
  2. 2.
    Carmona F., Delhaes P. (1981). Physical properties of non-crystalline carbons. In: Walker P.L. Jr., Thrower P.A. (eds), Chemistry and Physics of Carbon. Vol 17, Marcel-Dekker, New York, pp. 89Google Scholar
  3. 3.
    Mrozowski S. (1952). Phys. Rev. 85:609CrossRefGoogle Scholar
  4. 4.
    Ozaki J., Watanabe T., Nishiyama Y. (1993). J. Phys. Chem. 97:1400CrossRefGoogle Scholar
  5. 5.
    Ozaki J., Nishiyama Y. (1995). J. Appl. Phys. 77:4459CrossRefGoogle Scholar
  6. 6.
    J. Ozaki, M. Mitsui and Y. Nishiyama, Tanso, (1994) 268Google Scholar
  7. 7.
    Nishiyama Y. (1991). Fuel. Proc. Technol. 29:31CrossRefGoogle Scholar
  8. 8.
    Nishiyama Y., Tamai Y. (1980). CHEMTECH 680:1980Google Scholar
  9. 9.
    Oya A., Marsh H. (1982). J. Mater. Sci. 17:309CrossRefGoogle Scholar
  10. 10.
    Ozaki J., Mitsui M., Nishiyama Y. (1998). Carbon 36:131CrossRefGoogle Scholar
  11. 11.
    Ozaki J., Nozawa K., Oya A. (1998). Chem. Lett. 1998:573CrossRefGoogle Scholar
  12. 12.
    Wang X., Hsing I-M., Yue P.L. (2001). J. Power Source 96:282CrossRefGoogle Scholar
  13. 13.
    Tian J. H., Wang F.B., Shan ZH.Q., Wang R.J., Zhang J.Y. (2004). J. Appl. Electrochem. 34:461CrossRefGoogle Scholar
  14. 14.
    Uchida M., Furuoka Y., Sugawara Y., Ohara H., Ohta A. (1998). J. Electrochem. Soc. 145:3708CrossRefGoogle Scholar
  15. 15.
    Hitomi S., Yasuda H., Yamachi M. (2005). Electrochemistry 73:416Google Scholar
  16. 16.
    Toda T., Igarashi H., Watanabe M. (1999). J. Electroanal. Chem. 460:258CrossRefGoogle Scholar
  17. 17.
    Jahnke H., Shonbor M., Zimmermann G. (1976). Top. Curr. Chem. 61:133PubMedCrossRefGoogle Scholar
  18. 18.
    Scherson D.A., Tanaka A.A., Gupta S.L., Tryk D., Fierro C., Holze R., Yeager E.B., Lattimer R.P. (1986). Electrochim. Acta 31:1247CrossRefGoogle Scholar
  19. 19.
    Jaouen F., Marcotte S., Dodelet J.P., Lindbergh G. (2003). J. Phys. Chem. B 107:1376CrossRefGoogle Scholar
  20. 20.
    Bron M., Fiechter S., Bogdanoff P., Tributch H. (2002). Fuel Cells 2:137CrossRefGoogle Scholar
  21. 21.
    Kinoshita K. (1988). Carbon –Electrochemical and Physicochemical Properties. Wiley Interscience Publication, New York, pp. 360Google Scholar
  22. 22.
    Ozaki J., Nishiyama Y. (1989). J. Appl. Phys. 65:2744CrossRefGoogle Scholar
  23. 23.
    P.B. Hirsch, Proc. Roy. Soc. London A (1954) 226Google Scholar
  24. 24.
    J. Ozaki, A. Furuichi and A. Oya, ‘Preparation of electrochemically active carbons for oxygen reduction by carbonization of mixtures of metal complexes and furan rResin’, Extended Abstract of Carbon 2004, Providence, USA July 11–16 (2004)Google Scholar
  25. 25.
    P.L. Waters, ‘Proceedings of the 5th Conference on Carbon’, (edited by S. Mrozowski, Vol. 2, p. 131, Pergamon, New York, 1963)Google Scholar
  26. 26.
    Emmerich F.G., Soysa J.C., Torriani I.L., Luengo C.A. (1987). Carbon 25:417CrossRefGoogle Scholar
  27. 27.
    Laine N.R., Vastola F.J., Walker P.L. Jr, Jenkins R.G. (1963). J. Phys. Chem. 67:2030CrossRefGoogle Scholar
  28. 28.
    Dignard Bailey L., Trudeau M.L., Joly A., Schulz R., Lalande G., Guay D., Dodelet J.P. (1994). J. Mater. Res. 9:3203CrossRefGoogle Scholar
  29. 29.
    Martines-Alves M.C., Dodelet J.P., Guay D., Ladouceur M., Tourillon G. (1992). J. Phys. Chem. 96:10898CrossRefGoogle Scholar
  30. 30.
    Gruenig G., Jaeger E.G., Moeller U., Wiesener K. (1986). Z. Phys. Chem (Leipzig) 267:994Google Scholar
  31. 31.
    31. van Veen J.A.R., van Baar J.F., Kroese K.J. (1981). J. Chem. Soc. Faraday Trans, 1 77:2827CrossRefGoogle Scholar
  32. 32.
    Faubert G., Lalande G., Cote R., Guay D., Dodelet J.P., Weng L.T., Bertrand P., Denes G. (1996). Electrochim. Acta 10:1689CrossRefGoogle Scholar
  33. 33.
    Weng L.T., Bertrand P., Lalande G., Guay D. (1995). J. P. Dodelet, Appl. Surf. Sci. 84:9CrossRefGoogle Scholar
  34. 34.
    Lalande G., Tamizhmani G., Cote R., Dignard-Bailey L., Trudeau M.L., Shulz R., Guay D. (1995). J. P. Dodelet, J. Electrochem. Soc. 142:1162CrossRefGoogle Scholar
  35. 35.
    Widelov A., Larsson R. (1992). Electrochim. Acta 37:187CrossRefGoogle Scholar
  36. 36.
    Fournier J., Lalande G., Cote R., Guay D. (1997). J. P. Dodelet, J. Electrochem. Soc. 144:218CrossRefGoogle Scholar
  37. 37.
    Lalande G., Cote R., Guay D., Dodelet J.P., Weng L.T., Bertrand P. (1997). Electrochim. Acta 42:1379CrossRefGoogle Scholar
  38. 38.
    Cote R., Guay D., Dodelet J.P., Denes G. (1998). J. Electrochem. Soc. 145:2411CrossRefGoogle Scholar
  39. 39.
    Lefevre M., Dodelet J.P., Bertrand P. (2002). J. Phsy. Chem. B106:8705Google Scholar
  40. 40.
    Maldonado S., Stevenson K.J. (2004). J. Phsy. Chem. B 108:11375CrossRefGoogle Scholar
  41. 41.
    J. Ozaki, T. Anahara, A. Furuichi and A. Oya, Electrocatalytic activity of B-/N-doped carbon particles for the reduction of oxygen molecule, Extended Abstracts of Carbon 2003, Oviedo, Spain 6–10, July (2003)Google Scholar
  42. 42.
    Ladouceur M., Lalande G., Guay D., Dodelet J.P., Dignard-Dailey L., Trudeau M.L., Shulz R. (1993). J. Electrochem. Soc. 140:1974CrossRefGoogle Scholar
  43. 43.
    He P., Lefevre M., Faubert G., Dodelet J.P. (1999). J. New Mater. Electrochm. Systems 2:243Google Scholar
  44. 44.
    K. Kawata, Y. Otake, A. Furuichi, J. Ozaki and A. Oya, Preparation of metal-doped carbons from phenol–formaldehyde resin and their electrocatalytic activities for oxygen reduction, Preprint of 30th Annual Meeting of the Carbon Society of Japan, Chiba, Japan, Dec. 4–6 (2003), pp. 12–13Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jun-ichi Ozaki
    • 1
  • Kiyomi Nozawa
    • 1
  • Kunitaka Yamada
    • 1
  • Yoshinori Uchiyama
    • 1
  • Yoko Yoshimoto
    • 1
  • Atsuya Furuichi
    • 1
  • Tomonari Yokoyama
    • 1
  • Asao Oya
    • 1
  • L.J. Brown
    • 2
  • J.D. Cashion
    • 2
  1. 1.Department of Nano-Material SystemsGraduate School of Gunma UniverstyKiryuJapan
  2. 2.Department of PhysicsMonash UniversityClaytonAustralia

Personalised recommendations