Skip to main content
Log in

Potential-controlled chromatography for the separation of amino acids and peptides

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Potential-controlled chromatography is introduced as a new technique for the separation of amino acids and peptides. The principle of potential-controlled chromatography depends on the use of electrically conductive material as the stationary phase of the chromatographic column. Thus from an electrochemical point of view the packed column can be regarded as a packed-bed electrode. The electrical potential of this stationary phase can be controlled by a potentiostat. The separation of amino acid and peptide molecules during their migration through the column depends on their own electric charge on the one hand and on the electrical potential of the stationary phase on the other. The chromatographic separation of some amino acids could be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyddiatt A. (2002). Curr. Opin. Biotechnol. 13(2):95–103

    Article  PubMed  CAS  Google Scholar 

  2. Uretschläger A., Jungbauer A. (2002). Separation Science and Technology 37(7):1683–1697

    Article  Google Scholar 

  3. Hahn R., Berger E., Pflegerl K., Jungbauer A. (2003). Analytical Chemistry 75(3):543

    Article  PubMed  Google Scholar 

  4. Keller R.A. (1998). Analytical Chemistry. Weinheim, Wiley-VCH

    Google Scholar 

  5. Deinhammer R.S., Shimazu K., Porter M.D. (1991). Anal. Chem. 63:1889

    Article  CAS  Google Scholar 

  6. Deinhammer R.S., Ting E.Y., Porter M.D. (1993). J. Electroanal. Chem. 362:295

    Article  CAS  Google Scholar 

  7. Deinhammer R.S., Porter M.D., Shimazu K. (1995). J. Electroanal. Chem. 387:35

    Article  Google Scholar 

  8. Knizia M.W., Vuorilehto K., Schrader J., Sell D. (2003). Electroanalysis 15(1):49

    Article  CAS  Google Scholar 

  9. Storhas W. (2003). Bioverfahrensentwicklung. Wiley-VCH, Weinheim

    Google Scholar 

  10. Goldberg E. (eds). (1996). Handbook of Downstream Processing. Blackie Academic and Professional, London

    Google Scholar 

  11. Kumble K.D. (2003). Anal. Bioanal. Chem. 377(5):812

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt-Kastner G., Sell D. (1993). Recovery of Bioproducts. SCI, London

    Google Scholar 

  13. Ge H., Wallace G.G. (1989). Anal. Chem. 61:2391

    Article  CAS  Google Scholar 

  14. Nagaoka T., Fujimoto M., Nakao H., Kahuno K., Yano J., Ogura K. (1994). J. Electroanal. Chem. 64:179

    Article  Google Scholar 

  15. Nagaoka T., Fujimoto M., Nakao H., Kahuno K., Yano J., Ogura K. (1993). J. Electroanal. Chem. 350:337

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research (No. 9968N) was supported by Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V. through the German Federal Ministry of Economics and Labour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocak, F., Vuorilehto, K., Schrader, J. et al. Potential-controlled chromatography for the separation of amino acids and peptides. J Appl Electrochem 35, 1231–1237 (2005). https://doi.org/10.1007/s10800-005-9034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9034-6

Keywords

Navigation