Advertisement

Journal of Applied Electrochemistry

, Volume 36, Issue 1, pp 17–23 | Cite as

Effect of operational parameters of mini-direct methanol fuel cells operating at ambient temperature

  • Flavio Colmati
  • Valdecir A. Paganin
  • Ernesto R. Gonzalez*
Article

Abstract

There is currently increased interest in small-size direct methanol fuel cells for portable applications. This work presents results of the influence of operational parameters on the performance of a mini-direct methanol fuel cell. The effects of methanol concentration, Pt load, membrane thickness and PTFE content in the cathode diffusion layer on the performance were studied. Two anodic materials were prepared, PtRu 75:25 at.% and PtRu 90:10 at.%, as nanoparticles supported on Vulcan XC-72 carbon, while for the cathodes Pt/C E-TEK catalysts were used. The materials were characterized physically by EDX and DRX and electrochemically in a half-cell. The results with single cells showed better performances with cells operating with 3 mg Pt cm−2, 5 mol l−1 methanol solution, Nafion® 112 membrane and with 30 wt.% PTFE in the cathode diffusion layer deposited on only one face of the electrode support.

Keywords

DMFC electrocatalysis methanol oxidation mini-fuel cells portable equipment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

FC thanks CNPq, Brazil, for a graduate scholarship (133453/2001-4). The authors thank FAPESP, CNPq and CAPES, Brazil, for financial support.

References

  1. 1.
    R.G. Hockaday, M. DeJohn, C. Navas, P.S. Turner, H.L. Vaz and L.L. Vazul, ‘A Better Power supply for portable electronics microfuel cells’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 791–794Google Scholar
  2. 2.
    Dyer C.K. (2002) J. Power Sources, 106:31CrossRefGoogle Scholar
  3. 3.
    Han J. and Park E.S. (2002) J. Power Sources, 112:477CrossRefGoogle Scholar
  4. 4.
    J. Bostaph, C. Xie, J. Pavio, A.M. Fisher, B. Mylan and J. Hallmark, ‘1 W direct methanol fuel cell system as a desktop charger’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 996–999Google Scholar
  5. 5.
    Blum A., Duvcevani T., Philosoph M., Rudoy N. and Peled E. (2003) J. Power Sources, 117:22CrossRefGoogle Scholar
  6. 6.
    S.R. Narayanan and T.I. Valdez, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’, Vol. 4 (John Wiley & Sons, 2003) Part 10, pp. 1133–1141Google Scholar
  7. 7.
    F.N. Büchi, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’ Vol. 4 (John Wiley & Sons, 2003) Part 10, pp. 1152–1161Google Scholar
  8. 8.
    A. Heinzel and C. Hebling, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’, Vol. 4 (John Wiley & Sons, 2003) Part 10, pp. 1142–1151Google Scholar
  9. 9.
    S.R. Narayanan, T.I. Valdez, A. Kindler and C. Witham, ‘Advances in direct methanol fuel cell for mobile and portable applications’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 2002, pp. 1000–1003Google Scholar
  10. 10.
    C. Hebling, A. Heinzel, M. Müller, C. Müller, K. Tuber and A. Schmitz, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 134–137Google Scholar
  11. 11.
    C.S. Kim, T-H. Yang, D-P. Peck and S-H. Choi, ‘Development of air-breathing PEMFC for small portable power sources’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 424–427Google Scholar
  12. 12.
    Kelley S.C., Deluga G.A and Smyrl W.H. (2000) Electrochem. Solid-State Letters 3:407CrossRefGoogle Scholar
  13. 13.
    S. Gottesfeld, X. Ren, P. Zelenay, H. Dinh, F. Guyon and J. Davey, ‘Advances in Direct Methanol Fuel Cell Science & Technology at Los Alamos National Laboratory’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 799–802Google Scholar
  14. 14.
    S.R. Narayanan, T.I. Valdez and F. Clara, ‘Design of miniature direct methanol fuel cell power sources for cellular pone applications’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 795–798Google Scholar
  15. 15.
    Lee S.J., Chang-Chien A., Cha S.W., O’Hayre R., Park Y.I., Saito Y. and Prinz F.B. (2002) J. Power Sources 112:410CrossRefGoogle Scholar
  16. 16.
    E.R. Gonzalez, E.A. Ticianelli, A.L.N. Pinheiro and J. Perez, Patente Bras., INPI-SP No. 00321Google Scholar
  17. 17.
    Seddon E.A. and Seddon K.R. (1984) ‘The Chemistry of Ruthenium’. Elsevier, Amsterdam, pp. 1373Google Scholar
  18. 18.
    Lizcano-Valbuena W.H., Paganin V.A. and Gonzalez E.R., (2002) Electrochim. Acta 47:3715CrossRefGoogle Scholar
  19. 19.
    West A.R. (1984) Solid state chemistry and its applications. John Wiley & Sons, Chichester, pp. 734Google Scholar
  20. 20.
    Colmati F., Lizcano-Valbuena W.H., Camara G.A., Ticianelli E.A. and Gonzalez E.R. (2002) J. Brazilian Chem. Soc 13:474Google Scholar
  21. 21.
    Starz K.A., Auer E., Lehmann T. and Zuber R. (1999) J. Power Sources 84:167CrossRefGoogle Scholar
  22. 22.
    Á. S. Aricò, P. Cretì, Antonucci P.L., Cho J., Kim H. and Antonucci V. (1998) Electrochim. Acta, 43:3719CrossRefGoogle Scholar
  23. 23.
    Dohle H., Mergel J. and Stolten D. (2002) J. Power Sources 111:268CrossRefGoogle Scholar
  24. 24.
    Ticianelli E.A. and Gonzalez E.R. (1998) ‘Eletroquímica: Princípios e Aplicações, EDUSP-Universidade de São Paulo,São Paulo, pp. 224Google Scholar
  25. 25.
    Bard A.J. and Faulkner L.R. (1980) ‘Electrochemical Methods’, John Wiley and Sons, New York, pp. 283Google Scholar
  26. 26.
    Chang H., Kim J.R., Cho J.H., Kim K.H. and Choi K.H. (2002) Solid State Ionics 148:601CrossRefGoogle Scholar
  27. 27.
    J.A. Kosek, C.C. Cropley and M. Hamdan, ‘Portable direct methanol fuel cell systems’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 482–485Google Scholar
  28. 28.
    B.K. Kho, E-A Cho, I.H. Oh, S.A. Hong and H.Y. Ha, ‘The effects of operating conditions on the performance of air-breathing direct methanol fuel cells’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 262–265Google Scholar
  29. 29.
    S.S. Kocha, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’ Vol. 3 (John Wiley & Sons, 2003) pp. 538–565Google Scholar
  30. 30.
    Hogarth M.P. and Ralph T.R. (2002) Platinum Metals Rev 46:146Google Scholar
  31. 31.
    Heinzel A. and Barragán V.M. (1999) J. Power Sources 84:70CrossRefGoogle Scholar
  32. 32.
    J.R. Kim and H. Chang, ‘Porous diffusion electrode for direct methanol fuel cell and its applications to portable power pack’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 479–481Google Scholar
  33. 33.
    Kong C.S., Kim D.Y., Lee H.K., Shul Y.G. and Lee T.H. (2002) J. Power Sources, 108:185CrossRefGoogle Scholar
  34. 34.
    A. Oedegaard, A. Schmitz and C. Hebling, ‘The effect of diffusion layer on low temperature DMFC’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 258–261Google Scholar
  35. 35.
    Passos R.R. and Ticianelli E.A. (2002) J. Brazilian Chem. Soc, 13:483Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Flavio Colmati
    • 1
  • Valdecir A. Paganin
    • 1
  • Ernesto R. Gonzalez*
    • 1
  1. 1.Instituto de Química de São Carlos-USPSão CarlosBrazil

Personalised recommendations