Skip to main content
Log in

Effect of operational parameters of mini-direct methanol fuel cells operating at ambient temperature

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

There is currently increased interest in small-size direct methanol fuel cells for portable applications. This work presents results of the influence of operational parameters on the performance of a mini-direct methanol fuel cell. The effects of methanol concentration, Pt load, membrane thickness and PTFE content in the cathode diffusion layer on the performance were studied. Two anodic materials were prepared, PtRu 75:25 at.% and PtRu 90:10 at.%, as nanoparticles supported on Vulcan XC-72 carbon, while for the cathodes Pt/C E-TEK catalysts were used. The materials were characterized physically by EDX and DRX and electrochemically in a half-cell. The results with single cells showed better performances with cells operating with 3 mg Pt cm−2, 5 mol l−1 methanol solution, Nafion® 112 membrane and with 30 wt.% PTFE in the cathode diffusion layer deposited on only one face of the electrode support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.G. Hockaday, M. DeJohn, C. Navas, P.S. Turner, H.L. Vaz and L.L. Vazul, ‘A Better Power supply for portable electronics microfuel cells’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 791–794

  2. Dyer C.K. (2002) J. Power Sources, 106:31

    Article  CAS  Google Scholar 

  3. Han J. and Park E.S. (2002) J. Power Sources, 112:477

    Article  CAS  Google Scholar 

  4. J. Bostaph, C. Xie, J. Pavio, A.M. Fisher, B. Mylan and J. Hallmark, ‘1 W direct methanol fuel cell system as a desktop charger’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 996–999

  5. Blum A., Duvcevani T., Philosoph M., Rudoy N. and Peled E. (2003) J. Power Sources, 117:22

    Article  CAS  Google Scholar 

  6. S.R. Narayanan and T.I. Valdez, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’, Vol. 4 (John Wiley & Sons, 2003) Part 10, pp. 1133–1141

  7. F.N. Büchi, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’ Vol. 4 (John Wiley & Sons, 2003) Part 10, pp. 1152–1161

  8. A. Heinzel and C. Hebling, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’, Vol. 4 (John Wiley & Sons, 2003) Part 10, pp. 1142–1151

  9. S.R. Narayanan, T.I. Valdez, A. Kindler and C. Witham, ‘Advances in direct methanol fuel cell for mobile and portable applications’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 2002, pp. 1000–1003

  10. C. Hebling, A. Heinzel, M. Müller, C. Müller, K. Tuber and A. Schmitz, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 134–137

  11. C.S. Kim, T-H. Yang, D-P. Peck and S-H. Choi, ‘Development of air-breathing PEMFC for small portable power sources’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 424–427

  12. Kelley S.C., Deluga G.A and Smyrl W.H. (2000) Electrochem. Solid-State Letters 3:407

    Article  CAS  Google Scholar 

  13. S. Gottesfeld, X. Ren, P. Zelenay, H. Dinh, F. Guyon and J. Davey, ‘Advances in Direct Methanol Fuel Cell Science & Technology at Los Alamos National Laboratory’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 799–802

  14. S.R. Narayanan, T.I. Valdez and F. Clara, ‘Design of miniature direct methanol fuel cell power sources for cellular pone applications’, in Proceedings of the Fuel Cell Seminar, Portland, Oregon, USA, 30 October–2 November, 2000, pp. 795–798

  15. Lee S.J., Chang-Chien A., Cha S.W., O’Hayre R., Park Y.I., Saito Y. and Prinz F.B. (2002) J. Power Sources 112:410

    Article  CAS  Google Scholar 

  16. E.R. Gonzalez, E.A. Ticianelli, A.L.N. Pinheiro and J. Perez, Patente Bras., INPI-SP No. 00321

  17. Seddon E.A. and Seddon K.R. (1984) ‘The Chemistry of Ruthenium’. Elsevier, Amsterdam, pp. 1373

    Google Scholar 

  18. Lizcano-Valbuena W.H., Paganin V.A. and Gonzalez E.R., (2002) Electrochim. Acta 47:3715

    Article  CAS  Google Scholar 

  19. West A.R. (1984) Solid state chemistry and its applications. John Wiley & Sons, Chichester, pp. 734

    Google Scholar 

  20. Colmati F., Lizcano-Valbuena W.H., Camara G.A., Ticianelli E.A. and Gonzalez E.R. (2002) J. Brazilian Chem. Soc 13:474

    CAS  Google Scholar 

  21. Starz K.A., Auer E., Lehmann T. and Zuber R. (1999) J. Power Sources 84:167

    Article  CAS  Google Scholar 

  22. Á. S. Aricò, P. Cretì, Antonucci P.L., Cho J., Kim H. and Antonucci V. (1998) Electrochim. Acta, 43:3719

    Article  Google Scholar 

  23. Dohle H., Mergel J. and Stolten D. (2002) J. Power Sources 111:268

    Article  CAS  Google Scholar 

  24. Ticianelli E.A. and Gonzalez E.R. (1998) ‘Eletroquímica: Princípios e Aplicações, EDUSP-Universidade de São Paulo,São Paulo, pp. 224

    Google Scholar 

  25. Bard A.J. and Faulkner L.R. (1980) ‘Electrochemical Methods’, John Wiley and Sons, New York, pp. 283

    Google Scholar 

  26. Chang H., Kim J.R., Cho J.H., Kim K.H. and Choi K.H. (2002) Solid State Ionics 148:601

    Article  CAS  Google Scholar 

  27. J.A. Kosek, C.C. Cropley and M. Hamdan, ‘Portable direct methanol fuel cell systems’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 482–485

  28. B.K. Kho, E-A Cho, I.H. Oh, S.A. Hong and H.Y. Ha, ‘The effects of operating conditions on the performance of air-breathing direct methanol fuel cells’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 262–265

  29. S.S. Kocha, in W. Vielstich, H. Gasteiger and A. Lamm (Eds.), ‘Handbook of Fuel Cells – Fundamentals, Technology and Applications’ Vol. 3 (John Wiley & Sons, 2003) pp. 538–565

  30. Hogarth M.P. and Ralph T.R. (2002) Platinum Metals Rev 46:146

    CAS  Google Scholar 

  31. Heinzel A. and Barragán V.M. (1999) J. Power Sources 84:70

    Article  CAS  Google Scholar 

  32. J.R. Kim and H. Chang, ‘Porous diffusion electrode for direct methanol fuel cell and its applications to portable power pack’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 479–481

  33. Kong C.S., Kim D.Y., Lee H.K., Shul Y.G. and Lee T.H. (2002) J. Power Sources, 108:185

    Article  CAS  Google Scholar 

  34. A. Oedegaard, A. Schmitz and C. Hebling, ‘The effect of diffusion layer on low temperature DMFC’, in Proceedings of the Fuel Cell Seminar, Palm Springs, California, USA, 18–21 November, 2002, pp. 258–261

  35. Passos R.R. and Ticianelli E.A. (2002) J. Brazilian Chem. Soc, 13:483

    CAS  Google Scholar 

Download references

Acknowledgements

FC thanks CNPq, Brazil, for a graduate scholarship (133453/2001-4). The authors thank FAPESP, CNPq and CAPES, Brazil, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto R. Gonzalez*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colmati, F., Paganin, V.A. & Gonzalez*, E.R. Effect of operational parameters of mini-direct methanol fuel cells operating at ambient temperature. J Appl Electrochem 36, 17–23 (2006). https://doi.org/10.1007/s10800-005-9019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9019-5

Keywords

Navigation